

2015 Economic Studies Common Assumptions Scope of Work - Draft

Planning Advisory Committee Meeting

Wayne Coste

PROJECT MANAGER, ECONOMIC PLANNING

Outline

- Summary
- Stakeholder Input for 2015 Economic Studies
- Economic Study Metrics
- Economic Study Assumptions Affecting Energy Cost Results
- Assumptions
 - Demand
 - Development of the base network model
 - Resource modeling
 - Interchange modeling
 - Operating reserve
 - Fuel prices

Three 2015 Economic Study Requests

• Keene Rd. Interface (SunEdison)

http://www.iso-ne.com/static-assets/documents/2015/04/a6_sun_edison_presentation_economic_study_keene_rd.pdf

 Impact of Offshore Wind Deployment on New England's Wholesale Electricity Markets and Operations [Massachusetts Clean Energy Center]

http://www.iso-ne.com/static-assets/documents/2015/04/a6 cec presentation economic study offshore wind.pdf

 Impact of Maine Upgrades Identified in ISO-NE's Strategic Transmission Analysis for Wind Integration [RENEW Northeast (RENEW)]

http://www.iso-ne.com/static-

assets/documents/2015/04/a6_presentation_renew_strategic_transmission_analysis_wind_integration_economic_study_req.pdf

Summary

- The ISO will perform all three Economic Studies
 - The studies will be given priority by the ISO and Draft results to be presented to PAC by late 2015 or early 2016
 - Final reports completed after consultation with the PAC
- The studies will compare the performance of the future system with additional representative future system improvements
 - The study will not include detailed transmission planning analysis, such as new system impact studies
- The results *may* be used to inform the region on the need for future
 - Market Efficiency Transmission Upgrades in the Keene Road area
 - Public Policy Transmission Upgrades facilitating the integration of wind
 - Onshore wind resources in ME
 - Offshore wind resources in MA/RI

Stakeholder Input for 2015 Economic Studies

- The ISO is seeking input from the PAC today
 - High level scope of work
 - General study assumptions
- Later PAC input will be sought on
 - Overall study results and conclusions
 - Review of draft report
- Special economic study working groups *may* be formed to provide the ISO input on very detailed technical modeling and simulation methods not of interest to the general PAC audience
 - This has been done to support past Economic Studies
 - Past study groups required a very limited number of conference calls
 - May have different study working groups for each Economic Studies
- Alternatively or in addition to the economic study working group
 - PAC presentations will be structured to discuss the general PAC economic study issues upfront
 - More technical discussions will be discussed with PAC members as a last meeting agenda item

Economic Study Metrics

- Production Costs
- Load Serving Entity Energy Expenses
- Congestion
- Interface Flow Duration Curves
- Generation Energy Production by Fuel Type
- Environmental Air Emissions by Electric Generator Type
- **New**: Approximate cost estimates of representative transmission upgrades that can relieve congestion
 - Comparison of Annual Carrying Charges (assumed at 18%-22% of capital cost estimates) of transmission improvements with the production cost savings resulting from transmission improvements

Economic Study Assumptions Affecting Energy Cost Results

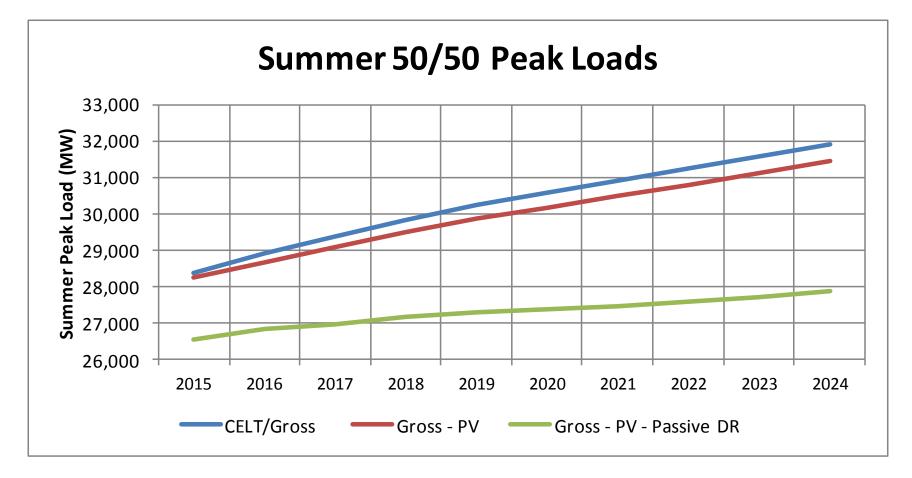
- Demand forecasts
- Energy Efficiency growth rates
- Renewable development and integration
- Types and locations of new resource development
- Potential retirements
 - Coal
 - Oil
 - Nuclear
- Fuel price
- Environmental emission allowance prices

Key Simulation Data

- Demand
- Transmission
 - Transmission Network
 - Internal Interface Limits
 - Phase Shifters
 - Line Monitoring
 - Contingencies
- Resources
 - Thermal Units
 - Hydro Units
 - Pumped Storage
 - Wind Units
 - Active Demand Resources, Energy Efficiency and Real-time Emergency Generators
 - Imports/Exports
 - Reserve Requirements

Questions

APPENDIX SIMULATION METHODOLOGY


Development of Base Model

Overview of Assumptions – Consistent with 2015 CELT

- Demand
 - Net of Energy Efficiency (EE) and Photovoltaic (PV) including forecasts
 - Active Demand Resources (DR) treated as supply
 - Hourly load profile based on 2006 weather (synchronized with wind data)
- Supply resources considered
 - Results from Forward Capacity Auction #9
 - Other Energy Only Resources
 - Wind in the each study are specified by the economic study request
 - Wind resource production modeled based on New England Wind Integration Study (NEWIS) data

50/50 Summer Peak Load Forecast Effect of Behind-the-Meter PV and Passive DR

Network Modeling

- Modeling of Transmission Network
 - ISO-NE FERC 715 filling of summer case
 - Detailed modeling in ISO-NE region only
 - Representation for neighboring systems
 - Detailed network modeling not required for NY, NB and HQ
 - Tie-line flows modeled by dummy resources at external nodes

13

• Base flows based on historical line flows

Network Modeling (cont)

- Modeling of Internal Interface Limits
 - The latest ISO-NE estimated internal interface limit values reflected
- Modeling of transmission line
 - All 230 kV and 345kV circuits ISO-NE region are monitored
 - Nearly 300 branches monitored
 - Includes transformers that step up to 230 kV and above
 - Generator step-up (GSU) transformers are excluded
 - Ensure a generating plant output is not limited by GSU modeling
- Monitoring of Transmission Line
 - 115 kV and above lines in areas of concern as appropriate
 - Maine for
 - Strategic Transmission Analysis Wind Integration study

- Keene Road study
- SEMA / RI for off-shore wind study

Network Modeling (cont)

- Modeling of contingencies
 - Modeled same contingencies as defined in previous GridView cases
 - Based on 3 years of historical binding contingencies in Day-Ahead Market
 - 100 out of 160 frequently occurring identified and modeled
 - Full set of transmission planning contingences (OP-19) not modeled
 - Additional system contingencies identified by relevant needs assessments and solution studies

Thermal Units

- Points of interconnection for resources based on 2015 FERC 715 filing summer cases
- Existing thermal units
 - Simulation study production cost parameters: Heat rate curve, Start-up cost, No-load cost and etc.
 - Primary and secondary fuel definition are based on 2015 CELT
- Operational limits assumed same as previous economic study
 - Minimum up time, Minimum down time and Start up time
 - Ramp rate limits
- Energy limits: assume no energy limits
- Future thermal units
 - Generic
 - Production cost parameters based on: unit type, technology and rating

Thermal Units (Cont.)

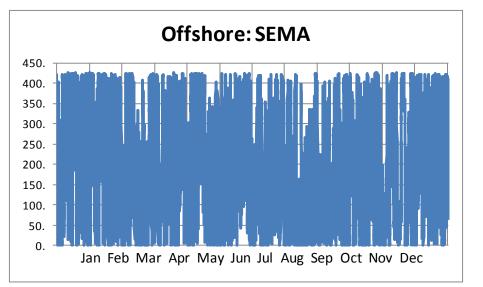
- Combined Cycle Units
 - Individual machines from a combined cycle plant are modeled separately, connecting to different buses
- Outages
 - Thermal units derated to reflect the forced outages using Equivalent Forced Outage Rate (EFOR)
 - Planned maintenance schedule will be developed and held constant across cases

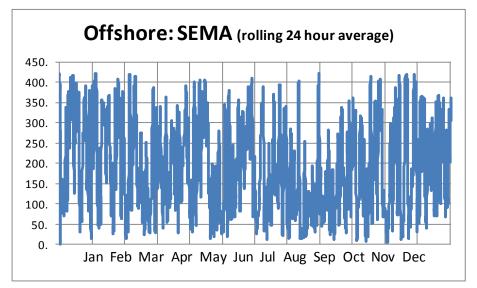
Hydro Units

- Hydro units modeled using
 - Hourly energy generation profiles
 - Used in previous economic studies
- Hydro units are assumed no maintenance outage

Pumped Storage Units

- Modeled in peak shaving mode
 - Pumping during off-peak hours
 - Generating during on-peak hours
- Pumped Storage physical parameters
 - Minimum pond size
 - Maximum pond size
 - Plant Capacity Factor
 - Based on assumptions used in previous studies

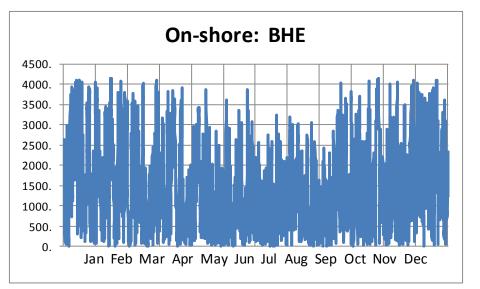

Wind Units

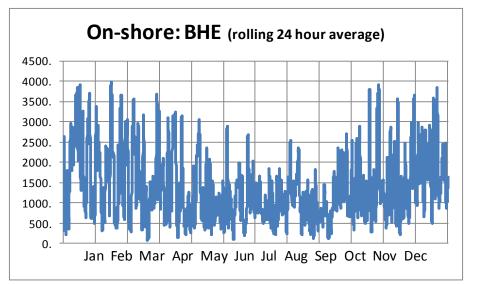

- Modeled as hourly resources,
 - Pre-defined using an hourly profile per RSP area
 - Same as used in previous economic studies
- Wind and hourly load profiles based on NEWIS data
 - ME-BHE (On-shore)
 - ME-CMP (On-shore)
 - NH (On-shore)
 - RI (Off-shore)
 - SEMA (Off-shore)
 - VT (On-shore)
 - WEMA (On-shore)
- Wind will be curtailed when transmission is constrained

Wind Profiles Based on NEWIS Profiles

Hourly Profile (to be used in the simulations)

Smoothed Hourly Profile (conceptual visualization)





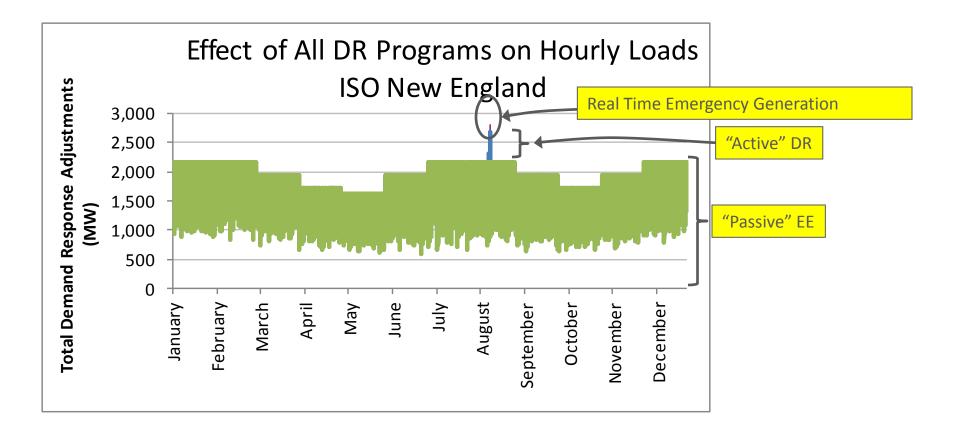
Wind Profiles Based on NEWIS Profiles

Hourly Profile (to be used in the simulations)

Smoothed Hourly Profile (conceptual visualization)

Photovoltaic

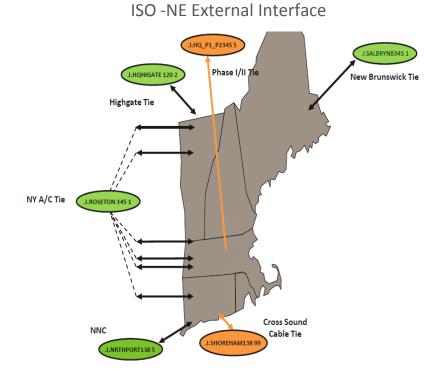
- Incorporating a time stamped, chronological solar PV profile
- National Renewable Energy Laboratory (NREL) has developed a simulated solar PV dataset based on 2006 weather
 - New England specific
 - Profiles by RSP area available
- Consistent with methodology used for wind profile
- Profiles to be developed consistent with the PV forecast discussed with the DGFWG


Demand Side Resources

- Active DR, EE and RTEG are modeled explicitly
 - Hourly profile for each category of demand side resource
 - FCA amounts used through capacity commitment periods
- Forecasts
 - The latest EE forecast through the year 2024 is reflected
 - Active DR and RTEG are held constant for years beyond capacity commitment period (same as other FCM resources)

24

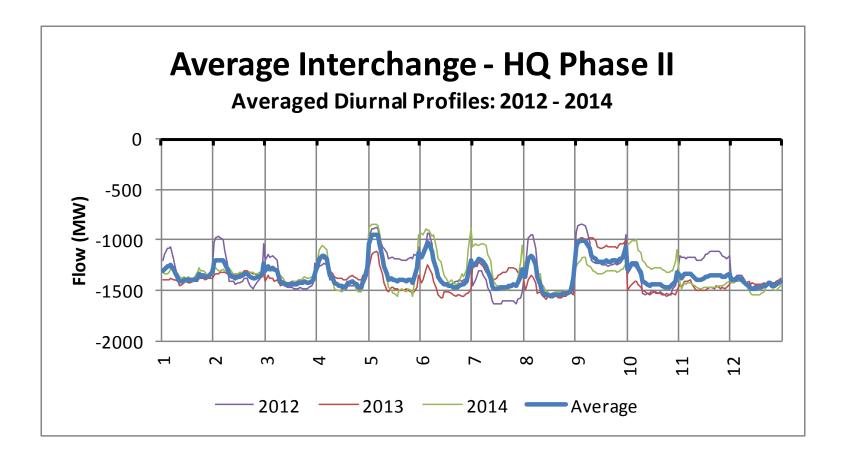
• Modeled the same as previous economic studies


Load Modifiers (Base Case) Energy Efficiency (EE), Active Demand Resources (DR) and Real-Time Emergency Generation (RTEG)

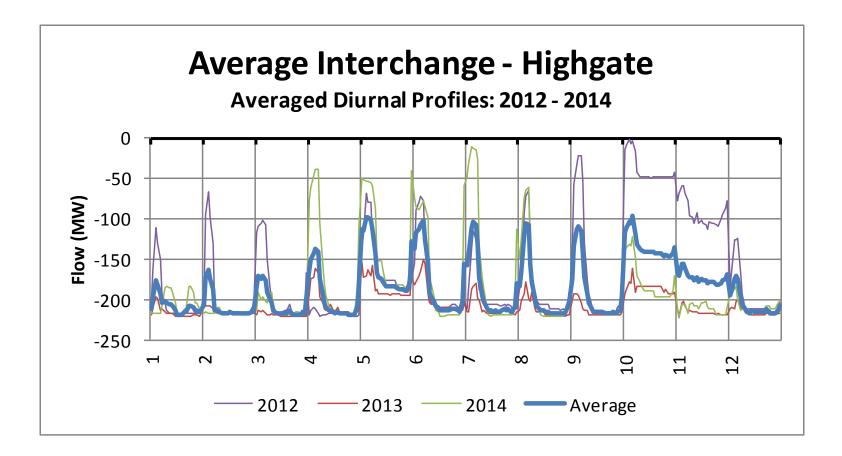
Imports and Exports

- Hourly imports and exports over the following external interconnections are modeled based on the average of 2012, 2013 and 2014 historical interchange values*
 - New York AC
 - NNC
 - Highgate
 - New Brunswick
 - Cross Sound Cable

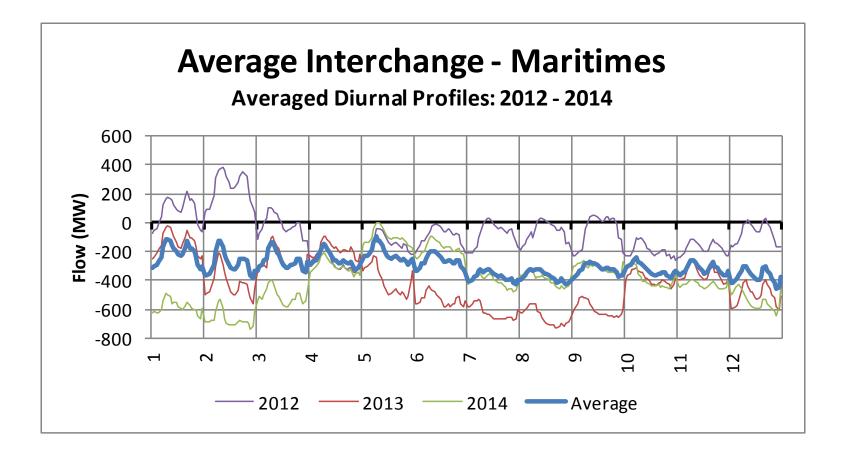
*The same approach used in previous economic studies for representing import/export assumptions

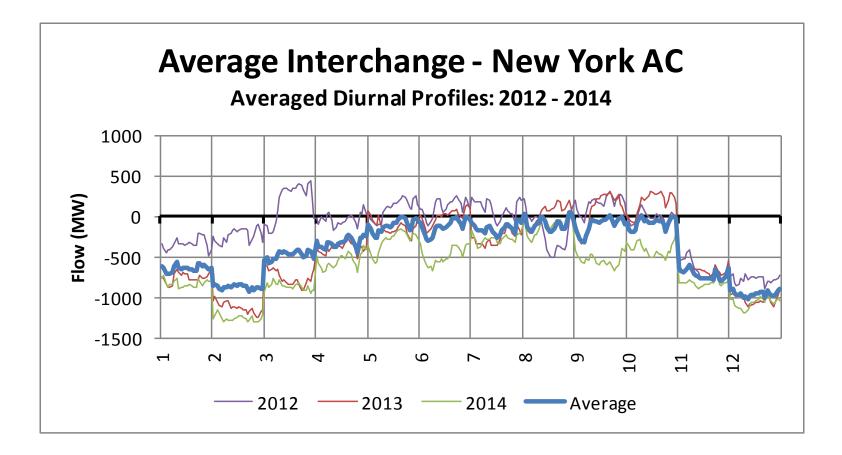


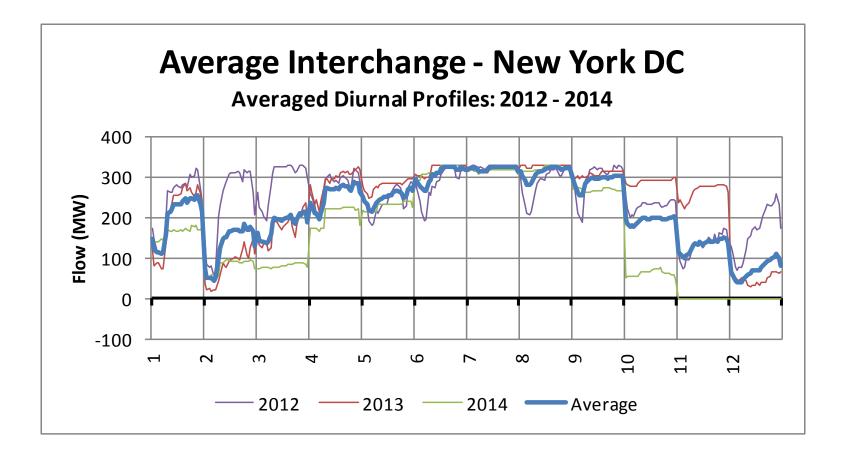
Modeling of Imports/Exports


Interchange Modeling

- Interchange with external areas will be based on:
 - Three year average
 - 2012
 - 2013
 - 2014
 - Monthly diurnal profiles
 - Five interchange profiles
 - HQ Phase II
 - HQ Highgate
 - Maritimes
 - New York interconnection AC
 - New York interconnection DC


Quebec to New England: Phase II

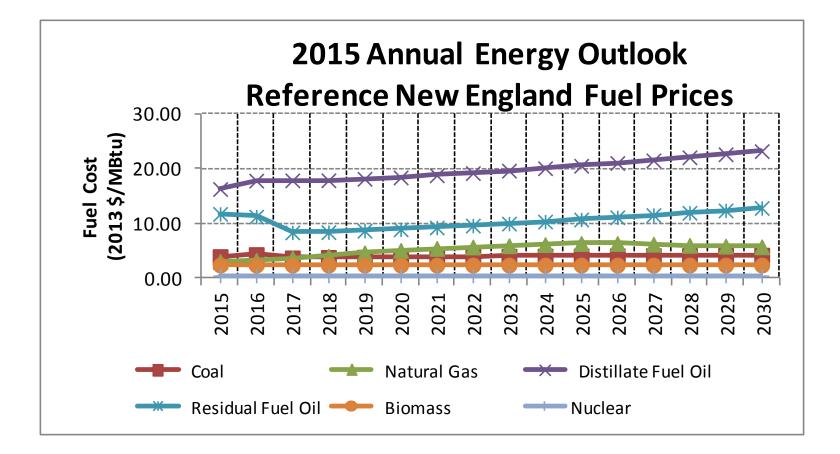

Quebec to New England: Highgate


Maritimes to New England

New England to New York - AC Interface

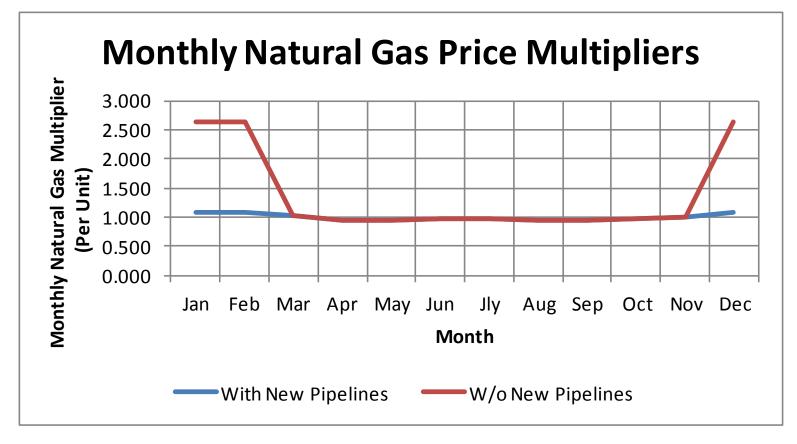
New England to New York - DC Interface

Modeling of Operating Reserves

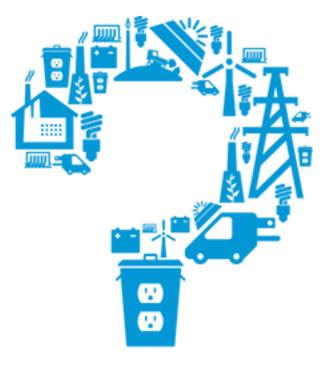

- Operating reserve requirement is determined in real time
 - Based on the first and second largest system contingencies
 - Resource profiles (hydro / wind / interchange etc) excluded
- Current operating reserve requirements
 - 125% of the first contingency in ten minutes split between
 - Ten-Minute spinning Reserve (TMSR) = 50%
 - Ten-Minute Non-Spinning Reserve (TMNSR) = 50%
 - Thirty-Minute Operation Reserve (TMOR) not modeled
 - Assumed to be adequate
 - Provided by hydro, pumped storage and quick-start resources
 - Reasonable assumption except, possibly, at times of peak loads

ISO-NE Reserve Requirement

Modeled	Not Modeled (assumed not a constraint)	
On-line: "Ten-Minute Spinning Reserve" (TMSR)	Off-line: "Ten-Minute Non-Spinning Reserve" (TMSNR)	On-line or Off-line:"Thirty- Minute Operating Reserve" (TMOR)
 Capability of on-line unit to provide increased energy within 10 minutes Partially loaded on-line generator Limited by ramp rate and Economic Maximum 	 Capability of off-line resources to provide energy within 10 minutes Off-line generation turbine, diesel or hydro generators Load interruption – Dispatchable Asset Related Demand (DARD) 	 Capability of resources to provide energy within 30 minutes Can be either on-line or off-line resource Generally the larger generation turbines Load Interruption – DARD can also qualify


Reference: Introduction to Wholesale Electricity Markets (WEM 101) - Reserve Market Overview http://www.iso-ne.com/support/training/courses/wem101/17_reserve_market_overview_likover.pdf

Fuel Price Forecast – EIA's 2015 AEO Base



Monthly Gas Price Profile

January, February and December gas prices equal residual oil in each year (\$/MBtu)

Questions

