ISO new england

2015 Economic Studies Strategic Transmission Analysis -On Shore Wind Integration Scope of Work – Revised Draft

Planning Advisory Committee Meeting

Wayne Coste

PROJECT MANAGER, ECONOMIC PLANNING

Outline

- Goal
- 2015 Economic Study Request

- Scope of Work
- Scenarios and Cases

Background: Strategic Transmission Analysis -Wind Integration (STA-WI)

- ISO-NE Strategic Transmission Analysis for Wind Integration (STA-WI)
 - Ongoing series of studies
 - Designed to understand transmission constraints in Maine affecting wind resources in northern New England
- Competition for transmission access
 - Results in bottled in energy
 - Inhibits development of additional wind resources
- STA-WI focused on upgrades that
 - Would not require major new transmission construction

Goal: Strategic Transmission Alternatives – Wind Integration (STA-WI)

- Develop economic and environmental metrics
 - Transmission improvements that increase wind deliverability from Maine
 - Reduce bottled-in wind energy
 - Reduce fossil fuel consumption in New England
- Evaluation period
 - Ten year period
 - Based on 2021 network model (with / without STA-WI upgrades)
- Identify transmission elements creating economic congestion
- The results *may* be used to
 - Identify the need for future Market-Efficiency Transmission Upgrades (METU) in the area of onshore wind resources in ME
 - Inform Public Policy requests for projects facilitating the integration of wind resources

SCOPE OF WORK

Strategic Transmission Analysis – Wind Integration (STA-WI)

Wind Units Considered

- Maine wind included in STA-WI
 - Downeast: 34 MW existing, 152 MW additional
 - Keene Road: 144 MW existing, 85 MW additional
 - North of Orrington: 0 MW existing, 150 MW additional
 - Wyman Hydro: 134 MW existing, 284 MW additional
 - Rumford: 73 MW existing, 57 MW additional
 - Total: 385 MW existing, 728 MW additional

STA-WI Transmission Upgrades

- Conceptual transmission upgrades consistent with those identified in the Strategic Transmission Analysis – Wind Integration
- Regional transmission upgrades
 - 275 MVAR of 115kV shunt capacitors for voltage support in Western and Southern Maine
 - Two 25 ohm, Thyristor-Controlled Series Compensation devices in Sections 388 and 3023

STA-WI Transmission Upgrades

- Local transmission upgrades already in Regional System Plan
 - Rebuild of Section 242 from Heywood Road to Winslow
- Local transmission upgrades not in Regional System Plan
 - Addition of series breakers at:
 - Albion Road
 - Coopers Mills
 - Livermore Falls
 - 115kV shunt capacitors for voltage support:
 - 205 MVAR in Western Maine
 - 30 MVAR in Downeast Maine
 - 500 MVAR Static VAR Compensator (SVC) at Maine Yankee 345 kV S/S
 - Rebuild of Wyman Hydro substation
 - Rebuild of Section 59 from Epping to Columbia (3 miles)
 - Rebuild of Section 66 from Rebel Hill to Epping
 - 50% series compensation on Line 64

Post MPRP Limits Increased with STA-WI Upgrades

- Maine stability / voltage interface limit increases
 - 275 MW improvement in Orrington-South
 - Post MPRP limit is 1375 MW
 - Post MPRP plus STA-WI limit is 1650 MW
 - 500 MW improvement in Surowiec-South
 - Post MPRP limit is 1600 MW
 - Post MPRP plus STA-WI limit is 2100 MW
 - 300 MW improvement in ME-NH
 - Post MPRP limit is 2000 MW
 - Post MPRP plus STA-WI limit is 2300 MW
- With higher interface limits for stability / voltage, thermal limitations may become binding under contingencies for certain dispatches

Scenarios

- Evaluate the economic impact of adding the identified upgrades that are not already part of the RSP Project List
- The base case would use the same generation assumptions as the STA-WI and evaluate the system with and without the new transmission upgrades
- Two sensitivities would evaluate the impact with less/more wind development
 - Sensitivity 1 reflects only wind units in service as of April 1, 2015
 - Sensitivity 2 use STA-WI wind unit assumptions plus three large representative projects in the queue

- OAKFIELD **OP417** Sensitivity 2 OP470 TO RESMICK NEW DRUNSWICK NEW BRUNSWICK NEW ENGLAND ONFIELD, KATAHON PAPER STETSON WIND I POWERSVILLE KIBBY CHESTER WYMAN HYDRO **OP393** KEENE R Include all wind EXPORT STETSON QP350-2 + ROLLINS + SECTION 85 CONUS TO PT. LEPREAU NEW BRUNSWICK CULLFORD **QP327** SEL CO QP333 COVANTA: ENFIELD KEENE RD EXPORT QP357 PISGAH ATHENS **BULL HILL** HANTLAND STARKS DETROIT RECORD HILL LAKENOOD **QP407** ADIEDIN DEBLOIS EPPNO QP350-1 RECORD QP406 BETTS RD HILL BOCCY NEW PAGE TUNK LAK (MEAD) COCEN HARRINGTO ROOBURY S.D. WARREN (SAPR) BUCKSPORT QP397 HEYWOOD RD-ELLSWORTH MULS R INFOR WINSLOW RIPS SPRUCE RPA DOWNEAST EXPORT BELFAST MULEY AEC RUNFORD T.R. MTN LIVERNORE FALLS CORRINGTON - SOUTH PRUCE M AUGUSTA 900 PUDOLEDOCH RUMFORD UNCOLNVILLE OPERS WILL (MAXCY'S) EXPORT NORWAY LARRABE BOWMAN BROWNS NIDOLE ST LOWER **EADON** KINGALL HETEL NEWCASTLE NLE LOVEL CHALLENCER CROWLEYS HIGHLAND PARK ST MASON ROWEC SUROWIEC - SOUTH RIVEN FARM WE WYMAN #4 MOSHERS REDBROCK S ODBHM ANFORD BIDDEFORD MACUIRE RD PRATE BRANCH DUNKER MAINE - NEW HAMPSHIRE
- from STA-WI plus three representative large projects in the queue
- Shown here in purple in their approximate location
- Additional 934 MW

Scenario Summary – Table of Year 2024 Metrics

	Post -MPRP	Post -MPRP
	Transmission System	Transmission System
	(including identified	Plus Upgrades Identified
	upgrades that are already	in the Wind Integration
	in the RSP)	Study
Concretion Included in the		
the Wind Integration Study	A (bonchmark)	D
	A (Delicilitark)	В
Sensitivity 1 Generation		
(wind integration Study		
minus wind that is not yet		
April 1, 2015)	C	
April 1, 2013)	C	
Sonsitivity 2 Concration		
(Wind Integration Study		
plus a few large wind		
projects in the queue)	F	F
		•
Sensitivity 2 Generation		
with 1000 MW of energy		
flow from New Brunswick	G	H

Questions

