ISO new england

The Growth of Solar in New England and its Impact on the Wholesale Market

Consumer Liaison Group

ISO-NE PUBLIC

Carissa Sedlacek

DIRECTOR, RESOURCE ADEQUACY, SYSTEM PLANNING

New England Has Seen Significant Growth in Solar Photovoltaic (PV) Resources

- Solar PV installations across the region are predominantly small (i.e., less than 5 MW) and interconnected to the distribution system through state-jurisdictional interconnection standards
- Because the ISO cannot observe or dispatch most solar PV in the region, these projects act as a modifier of system load
- Solar PV must be accurately forecasted to support the efficient administration of the day-ahead market and the reliable operation of the system in real time
- The growth of solar PV in the region is due in large part to the policies and programs put in place by the New England states

States Have Set Goals to *Increase* Renewable Energy and *Reduce* Greenhouse Gas Emissions

ISO-NE PUBLIC

State Renewable Portfolio Standard (RPS) for Class I or New Renewable Energy by 2020 Percent Reduction of Greenhouse Gas (GHG) Emissions Below 1990 Levels* by 2050 (economy wide)

* Vermont's standard recognizes all forms of renewable energy, and is unique in classifying large-scale hydro as renewable.

* Connecticut's goal is tied to 2001 levels. Maine's goal is tied to 2003 levels.

ISO New England Forecasts Growth in Distributed Generation Resources

 Since 2013, the ISO has led a regional Distributed Generation Forecast Working Group (DGFWG) to collect data on distributed generation (DG) policies and implementation, and to forecast long-term incremental DG growth in New England

- The DGFWG focuses on the following types of DG resources:
 - Under 5 MW
 - Connected to the distribution system
 - Not visible to the ISO directly
 - Specifically solar PV resources, the largest DG component
- The ISO forecasts strong growth in solar PV over the next 10 years

ISO New England Forecasts Strong Growth in Solar PV

ISO-NE PUBLIC

Source: Final PV Forecast (April 2015); Note: MW values are AC nameplate

Solar PV Installed Through December 2015

 The table below reflects statewide aggregated solar PV data provided to the ISO by regional distribution owners, representing installed nameplate as of December 31, 2015

State	Nameplate Capacity (MW _{ac})
Connecticut	188.01
Maine	15.34
Massachusetts	947.11*
New Hampshire	26.36
Rhode Island	23.59
Vermont	124.57*
Total	1,325.00

* Includes values based on MA SREC data associated with 43 MA municipalities and VT SPEED data for 3 VT municipalities that did not provide individual responses <u>http://www.iso-ne.com/static-assets/documents/2016/02/pvsurveyresults_20160224.pdf</u>

Solar Power Has a Significant Impact on New England's Electricity Demand

Estimated Electricity Needs Served by Solar Power – – Demand Without Solar Power – Electricity Demand Seen in Real Time

State Installed Solar PV "Heat Maps"

- Understanding the spatial distribution of existing solar PV resources will be critical to the ISO's ongoing integration activities within both System Planning and System Operations
- Based on the data provided by distribution owners, the ISO has aggregated the installed nameplate capacity by town within each state, and generated heat maps showing the results

Note: Heat map reflects solar PV installed through August 31, 2015.

Connecticut Installed Solar PV "Heat Map"

5.0+

4.5

4.0

3.5

3.0

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

9

The ISO Is Leading Efforts to Account for Solar Resources Connected to the Distribution System

• Forecasting Long-Term Solar Growth

- The ISO tracks historical growth and predicts levels of solar development 10 years into the future
- The solar forecast is used in transmission planning and market needs assessments

▦	▦
HHH	HHH
777	777

• Forecasting Short-Term Solar Performance

- The ISO creates daily forecasts of solar generation production to improve daily load forecasts and situational awareness for grid operators
- Improving Interconnection Rules
 - The ISO is engaged with industry stakeholders to strengthen interconnection standards and reduce reliability concerns

ISO-NE PUBLIC

The ISO Accounted for Solar PV Resources in the Most Recent Forward Capacity Auction

- The Installed Capacity Requirement (ICR) for a Forward Capacity Auction (FCA) is the **minimum level of capacity** required to meet reliability requirements for the New England Control Area for the relevant Capacity Commitment Period (three years in the future)
- The ICR is based on **three essential components**: the load forecast, resource availability, and tie benefits

ISO-NE PUBLIC

 In its order accepting the ICR for FCA #9, the Federal Energy Regulatory Commission (FERC) directed the ISO to fully explore the incorporation of distributed generation resources into the ICR calculation for FCA #10

The ISO Accounted for Solar PV Resources in the Most Recent Forward Capacity Auction, *continued*

- The ISO worked with stakeholders through the DGFWG to develop the 2015 solar PV forecast
- Through that forecast, the ISO identified behind-the-meter solar PV resources that are forecasted to be installed, or that have already been installed, but are not yet reflected in historical loads

ISO-NE PUBLIC

- Referred to as "behind-the-meter not-embedded-in-load" solar PV resources
- The ISO adjusted the load forecast by the forecasted "behind-the-meter not-imbeddedin-load" solar PV resources, resulting in a 390 MW reduction in the ICR for FCA #10

The ISO Accounted for Solar PV Resources in the Most Recent Forward Capacity Auction, *continued*

ISO-NE PUBLIC

- On January 8, 2016, FERC accepted the ICR for FCA #10 and found that the ISO properly incorporated "behind-the-meter not imbedded-in-load" solar PV resources into the ICR calculation
- On February 8, 2016, the ISO conducted FCA #10, procuring the capacity resources needed to meet the ICR for the 2019-2020 Capacity Commitment Period
 - About 35,567 MW of capacity cleared the auction to meet the 34,151 MW ICR for 2019-2020

Conclusions

• The ISO will continue to actively track and forecast the growth of solar PV in the region

- The ISO will continue to evaluate its potential impacts on the efficient administration of wholesale electricity markets and the reliable operation and planning of the region's electric power system
- Because many other regions of North America also are witnessing the large-scale adoption of solar PV, the ISO will continue to engage with other ISOs/RTOs to share relevant methods and experience

Questions

ISO-NE PUBLIC

For More Information...

- Subscribe to the ISO Newswire
 - <u>ISO Newswire</u> is your source for regular news about ISO New England and the wholesale electricity industry within the six-state region
- Log on to ISO Express
 - <u>ISO Express</u> provides real-time data on New England's wholesale electricity markets and power system operations
- Follow the ISO on Twitter
 - @isonewengland
- Download the ISO to Go App
 - <u>ISO to Go</u> is a free mobile application that puts real-time wholesale electricity pricing and power grid information in the palm of your hand

ISO-NE PUBLIC

About the Power Grid

