

Generic Capital Costs of Supply-Side Resources

Planning Advisory Committee

Jessica Lau

RESOURCE ADEQUACY

Revised

Background

Objective: Provide an update on generic capital costs for new supply-side resources to support Regional System Plan studies

- Following stakeholder requests, ISO-NE has provided generic capital costs of generation technologies since 2009
- An annual update of these costs is useful to reflect any changes in conditions affecting capital costs
- This information could be used for some regional planning studies

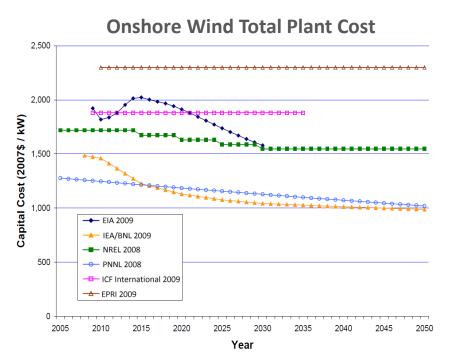
Different Ways Capital Costs are Presented

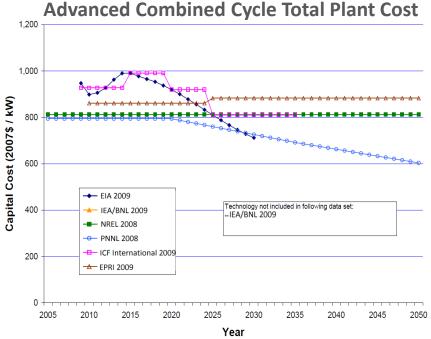
- Total plant costs (TPC)
 - Also referred to as "Overnight Construction Costs" or "Overnight Capital Costs"
 - Developed on the theoretical basis of construction occurring at a single point of time
 - Includes materials, equipment and labor for all process facilities, fuel handling and storage, water intake structure and wastewater treatment, offices, maintenance shops, warehouses, step-up transformer and transmission interconnection, etc.
- Total capital requirement (TCR)
 - Also referred to as "All-In Costs"
 - Includes TPC plus owner's cost and interest expenses during construction (often referred to as Allowance for Funds Used During Construction, or AFUDC)
 - Larger disparity between TPC and TCR when comparing technologies with prolonged construction periods
- All costs presented in this presentation reflect TPC or overnight costs

Factors Affecting Total Plant Cost

Specific project costs may differ from generic costs for the following reasons:

- Technology development
- Unit size
- Costs of materials, labor and overhead
- Inflation and interest during construction
- Regulation and other policy interventions
- Specific site requirements
- Regional costs differences


Data Sources


- 1. ICF International, "Cost and Performance Assumptions for Modeling Electricity Generation Technologies," NREL, Golden, 2010.
- 2. Black & Veatch, "Cost and Performance Data for Power Generation Technologies," NREL, 2012.
- 3. US EIA, "Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants," US DOE, Washington, 2013.
- 4. EPRI, "Program on Technology Innovation: Integrated Generation Technology Options 2012," EPRI, Palo Alto, 2013.
- 5. Energy and Environmental Economics, "Cost and Performance Review of Generation Technologies: Recommendation of WECC 10- and 20- Year Studies," WECC, Salt Lake City, 2012.
- 6. The Brattle Group, Capital Cost Assumptions Developed for ISO-NE Forward Capacity Market, 2014.

Variety of Assumptions Observed

NREL compared 6 data sets of assumptions

- EIA, IEA, NREL, PNNL, ICF International and EPRI
- Many different assumptions

Source 1

Investigation of a Conventional NGCC Unit

Source	Plant Size (MW)	Heat Rate (Btu/kWh)	Total Plant Cost (\$/kW)
Black and Veatch/ NREL	615	6,705	1230 (2009\$)
EIA	620	7,050	917 (2012\$)
EPRI	550	7,000	900-1,150 (2011\$)

WECC Research Summary and Recommendation (2012\$)

Installation Capital Cost Fixed O&M **Heat Rate** Source [\$/kW] [\$/kW-yr] [Btu/kWh] Vintage **APS IRP** \$827 \$4.7 6,473 **B&V/NREL** 2010 \$1,336 \$6.4 6.705 Brattle/CH2M Hill 2015 \$856 \$14.1 7,096 EIA/RW Beck \$14.4 7.050 \$1,045 \$1,241 \$11.6 6,800 IPC IRPa \$1,338 \$6.8 6.800 \$807 \$10.9 6.798 **NETL** \$1,086 \$13.3 6,975 NVE IRPb \$1.713 \$26.6 6.989 \$928 \$7.1 6.885 PacifiCorp IRP^c 2014 \$1,181 \$13.5 7,302 \$719 \$6.9 6.947 Xcel IRPd 2011 - 2018\$1,145 \$10.8 6.733 7,000 Recommendation \$1,100 \$10.0 Source 5

Source 2, 3, 4

Low cost estimate is a 540 MW CCGT; high cost estimate is a 270 MW CCGT.

Low cost estimate is 612 MW; high cost is 261 MW.

^c The range presented includes variation in plant size and location. Low cost estimate is a 620 MW plant in the Northwest; high cost estimate is a 270 MW plant in Utah.

Low cost estimate is 808 MW; high cost is 346 MW.

Generic Overnight Capital Costs

Technology Types in the Interconnection Queue as of 4/1/14

Technology Type	Plant Size (MW)	Heat Rate (Btu/kWh)	Total Plant Cost (\$/kW)
Advanced CC	340 – 400	6,430 – 7,525	1,025 – 2,095
Advanced GT	190 – 210	9,130 – 9,750	675 – 1,260
Biomass	20 – 100	12,350 – 13,500	3,600 - 8,180
Conventional CC	550 – 730	7,000 – 7,525	820 – 1,150
Conventional GT	85 – 420	10,580 – 10,850	640 – 975
NG Fuel Cells	10	9,500	7,110
Offshore Wind	200 – 400	N/A	3,100 – 6,230
Onshore Wind	50 – 200	N/A	1,750 – 2,400
Solar Photovoltaic	5 – 150	N/A	2,000 – 4,185

2011/12/13\$

Note 1: EIA (Source 3), EPRI (Source 4) and the Brattle Group (Source 6) are used as assumptions. These are the most recent reports available.

Note 2: When ranges of values are absent, only single value assumptions are provided.

Note 3: Values may be rounded to the nearest increment of 5.

Revised

Generic Overnight Capital Costs (Cont.)

Other Technology Types Not in Interconnection Queue as of 4/1/14

Technology Type	Plant Size (MW)	Heat Rate (Btu/kWh)	Total Plant Cost (\$/kW)
Conventional Hydro	500	N/A	2,935
Geothermal	50	N/A	4,360 - 8,400
IGCC (Single Unit)	600	8,700 – 8,900	2,800 – 4,400
Municipal Solid Waste	50	18,000	8,310
Nuclear	1,400 – 2,235	10,000	4,000 - 5,530
Pulverized Coal	650 – 750	8,750 - 8,800	2,000 – 3,245
Pumped Storage	250 – 1,000	N/A	1,500 - 5,290

2011/12/13\$

Note 1: EIA (Source 3), EPRI (Source 4) and the Brattle Group (Source 6) are used as assumptions. These are the most recent reports available.

Note 2: When ranges of values are absent, only single value assumptions are provided.

Note 3: Values may be rounded to the nearest increment of 5

Revised

Questions

Abbreviations

APS IRP – Arizona Public Service Company

B&V/NREL – Black & Veatch

Brattle/CH2M Hill – The Brattle Group with CH2M HILL

EIA – US Energy Information Administration

EPRI – Electric Power Research Institute

IEA – International Energy Agency

IPC IRP – Idaho Power Company

NETL – National Energy Technology Laboratory

NREL – National Renewable Energy Laboratory

NVE IRP – Nevada Energy

PacifiCorp IRO – Pacifi Corp

PNNL – Pacific Northwest National Laboratory

Xcel IRP – Xcel Energy