

February 28, 2014

VIA ELECTRONIC FILING

The Honorable Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street, N.E. Washington, D.C. 20426

ISO New England Inc., Docket No. ER14-___-000 Re:

Forward Capacity Auction Results Filing

April 14, 2014 COMMENT DATE REQUIRED BY REGULATION

Dear Ms. Bose:

Pursuant to Section 205 of the Federal Power Act ("FPA") and Section III.13.8.2 of the ISO New England Transmission, Markets and Services Tariff (the "Tariff"), 2 ISO New England Inc. (the "ISO") submits this Forward Capacity Auction Results Filing ("FCA Results Filing") for the eighth Forward Capacity Auction³ ("FCA"). Section III.13.8.2 (a) of the Tariff requires the ISO to file the results of the FCA with the Federal Energy Regulatory Commission ("Commission" or "FERC") as soon as practicable after the FCA is complete. The eighth FCA was held on February 3, 2014 for the June 1, 2017 through May 31, 2018 Capacity Commitment Period. The ISO submits this filing in accordance with the Tariff.

Pursuant to Section III.13.8.2(c) of the Tariff, any objection to the FCA results must be filed with the Commission within 45 days from the date of the FCA Results Filing. Accordingly, any objections must be filed on or before April 14, 2014, and the ISO requests that the Commission issue a notice setting an April 14, 2014 comment date. As discussed below, the ISO requests an effective date of June 28, 2014, which is 120 days from the date of this submission.

In accordance with Section III.13.8.2 of the Tariff, this submission contains the results of the eighth FCA, including the Capacity Zones in the auction; the Capacity Clearing Price in each

¹ 16 U.S.C. § 824d (2006).

² The rules governing the Forward Capacity Market ("FCM Rules") are primarily contained in Section III.13 of the Tariff, but also may include other provisions, including portions of Section III.12 (Calculation of Capacity Requirements).

³ Capitalized terms used but not otherwise defined in this filing have the meanings ascribed thereto in the Tariff, the Second Restated New England Power Pool Agreement and the Participants Agreement.

of those Capacity Zones; a list of which resources received Capacity Supply Obligations in each Capacity Zone; and the amount of those Capacity Supply Obligations. Pursuant to Tariff Section III.12.4, the Capacity Zones for the eighth FCA are Maine, Connecticut, Northeastern Massachusetts/Boston ("NEMA/Boston") and Rest-of-Pool. The Rest-of-Pool Capacity Zone includes Southeastern Massachusetts, Western/Central Massachusetts, Rhode Island, New Hampshire and Vermont. Maine is an export-constrained zone and Connecticut and NEMA/Boston are import-constrained zones.

The auction commenced with a starting price of \$15.82/kW-month and concluded with a price of \$14.99/kW-month when a resource submitted a bid to withdraw from the auction if the price fell lower. The auction clearing function reset the Capacity Clearing Price to \$15.00/kW-month. New resources that received Capacity Supply Obligations in the Maine, Connecticut and Rest-of-Pool Capacity Zones will be paid the Capacity Clearing Price of \$15.00/kW-month. Existing resources that cleared in those zones will be paid the administrative price of \$7.025/kW-month. In the NEMA/Boston Capacity Zone, both new and existing resources will be paid \$15.00/kW-month.

Section III.13.8.2 of the Tariff requires the ISO to enumerate any de-list bids rejected for reliability reasons pursuant to Section III.13.2.5.2.5 of the Tariff, and the reasons for those rejections. No de-list bids were rejected for reliability.

Section III.13.8.2 (b) of the Tariff requires the ISO to provide documentation regarding the competitiveness of the FCA. The documentation may include certification from the auctioneer and the ISO that: (i) all resources offering and bidding in the FCA were properly qualified in accordance with the provisions of Section III.13.1; and (ii) the FCA was conducted in accordance with the provisions of Section III.13. Pursuant to Section III.13.8.2 (b), the ISO has included the Testimony of Stephen J. Rourke, Vice President of System Planning at the ISO ("Rourke Testimony"), the Testimony of David LaPlante, Vice President of the Internal Market Monitor ("IMM") at the ISO ("LaPlante Testimony"); and the Testimony of Lawrence M. Ausubel, the auctioneer ("Ausubel Testimony").

The ISO tenders the instant filing in compliance with Section III.13.8.2 of its Tariff pursuant to Section 205 of the FPA, and the ISO requests that the Commission find that the ISO conducted the eighth FCA in accordance with its FERC-approved Tariff.

I. COMMUNICATIONS

All correspondence and communications in this proceeding should be addressed to the undersigned as follows:

Raymond W. Hepper, Esq. Kevin W. Flynn, Esq. ISO New England Inc. One Sullivan Road Holyoke, MA 01040-2841

Tel: (413) 540-4592 Fax: (413) 535-4379

E-mail: rhepper@iso-ne.com kflynn@iso-ne.com

II. STANDARD OF REVIEW

The ISO tenders the instant filing in compliance with Section III.13.8.2 of its Tariff and pursuant to Section 205 of the FPA. The ISO respectfully requests that the Commission find that the eighth FCA Results Filing meets the standard of Section 205, in that the results are just and reasonable rates derived from the auction utilizing a methodology previously approved by the Commission. As explained in the testimonies of Mr. Rourke and Mr. LaPlante, the auction prices for new resources were set by the Capacity Clearing Price and the auction prices for existing resources were established based on the various administrative pricing provisions in the ISO's Commission-approved Tariff. The attached testimonies support these conclusions, and provide the basis for the Commission to approve the resulting rates.

III. REQUESTED EFFECTIVE DATE

The ISO respectfully requests that the Commission accept the eighth FCA Results Filing, confirming that the auction was conducted in conformance with the ISO's Commission-approved Tariff, to be effective June 28, 2014 which is 120 days after the date of submission. Under the Tariff, parties have 45 days to file with the Commission an objection to the FCA Results Filing. An effective date of 120 days from the date of submission gives interested parties an opportunity to respond to any objections and provides the Commission time to review the FCA Results Filing and associated pleadings.

IV. SPECIFIC FCA RESULTS

A. Capacity Zones Resulting From the Auction

Section III.13.8.2 (a) of the Tariff requires the ISO to provide the Capacity Zones resulting from the FCA. The Capacity Zones for the eighth FCA are Maine, Connecticut, NEMA/Boston and Rest-of-Pool. Pursuant to Section III.13.2.3.4 of the Tariff, these are the same Capacity Zones that were modeled in Section III.12.4 of the Tariff.

_

⁴ It should be noted that the Commission has consistently held that the matters properly in dispute in the annual FCA results filing are the results of the FCA and not the underlying market design or rules. *See e.g., ISO New England Inc.*, 130 FERC ¶ 61,145 at P 33 (2010) (finding that challenges to the FCM market design are outside the scope of the proceeding evaluating the FCA results filing).

B. Capacity Clearing Price

The Tariff requires the ISO to provide the Capacity Clearing Price in each Capacity Zone (and the Capacity Clearing Price associated with certain imports pursuant to Section III.13.2.3.3(d), if applicable). For the eighth FCA, the descending clock auction starting price in each Capacity Zone was \$15.82/kW-month. The Capacity Clearing Price was \$15.00/kW-month for new resources and the administrative price of \$7.025/kW-month for existing resources in the Maine, Connecticut and Rest-of-Pool Capacity Zones. New and existing resources in the NEMA/Boston Capacity Zone be paid the Capacity Clearing Price of \$15.00/kW-month.

The provisions in the Tariff relating to Insufficient Competition ("IC Rule"), the Capacity Carry Forward ("Carry Forward Rule") and the Capacity Clearing Price Floor determined the prices for the eighth FCA. The IC Rule addresses situations where there are less existing resources than the Net Installed Capacity Requirement ("NICR") and not enough qualified new resources to assure adequate competition in the auction (although when combined, the existing and new resources exceed NICR). Under Section III.13.2.8.2 of the Tariff, the IC Rule is triggered in the FCA if the following two conditions are satisfied: (i) at the start of the auction, the amount of capacity offered from all existing resources is less than the NICR (the difference being defined as "New Capacity Required") and, (ii) the amount of capacity offered from New Generating Capacity Resources and New Demand Resources is less than twice the amount of New Capacity Required. For the eighth FCA, there was Insufficient Competition system-wide because both of these conditions were in effect. Specifically, there was 32,732 MW of capacity from existing resources and 424 MW of capacity offered from New Generating Capacity Resources and New Demand Resources to meet the NICR of 33,855 MW.

Under Section III.13.2.8.2 of the Tariff, if the IC Rule is triggered, existing resources receive the lower of: (1) the Capacity Clearing Price, or (2) the administrative price in the Tariff, which for the eighth FCA is \$7.025/kW-month. Therefore, since the Capacity Clearing Price was determined to be \$15.00/kW-month for new resources in the Maine, Connecticut and Rest-of-Pool Capacity Zones, existing resources in those zones will be paid the administrative price of \$7.025/kW-month.

In the NEMA/Boston Capacity Zone, the Carry Forward Rule was triggered. The Carry Forward Rule addresses situations where a large resource met a zonal need, but eliminated any need for new resources in the subsequent auction. The intent of the Carry Forward Rule is to reset the clearing price administratively when new additional capacity would have been needed and consequently would have set the clearing price, but did not because of an excess amount of additional new capacity procured in the prior auction. Under Section III.13.2.7.9.1 of the Tariff, the Carry Forward Rule is triggered in an import-constrained zone if:

(a) the sum of New Capacity Required plus the amount of Permanent De-List Bids clearing in the Forward Capacity Auction in the Capacity Zone is less than or equal to zero; (b) there is not Inadequate Supply in the Forward Capacity

-

⁵ Tariff Section III.13.8.2 (a).

Auction in the Capacity Zone; and (c) at the Capacity Clearing Price, the sum of the amount of New Capacity Required plus the amount of Permanent De-List Bids clearing in the Forward Capacity Auction plus the amount of capacity carried forward due to rationing is greater than zero. The amount of capacity carried forward due to rationing shall equal the amount of capacity above the Local Sourcing Requirement procured in that Capacity Zone in the previous Forward Capacity Auction as a result of the Capacity Rationing Rule.

In the seventh FCA, which was held in February 2013 for the 2016-2017 Capacity Commitment Period, the NEMA/Boston Capacity Zone began the auction needing new capacity. The auction in NEMA/Boston closed when Footprint Power, a 674 MW New Capacity Generating Resource, submitted an offer to withdraw from the auction at a price of \$14.99/kW-month. Without the capacity from Footprint Power, NEMA/Boston would not have had sufficient capacity to meet its Local Sourcing Requirement. Because Footprint Power elected not to be rationed, all 674 MW from Footprint Power cleared in the auction, even though NEMA/Boston only needed about 174 MW from Footprint Power to meet the zone's Local Sourcing Requirement. Therefore, there was approximately 500 MW of excess capacity from Footprint Power that carried forward to the eighth FCA and the Carry Forward Rule was triggered in NEMA/Boston.

Section III.13.2.7.9.2 of the Tariff specifies the prices to be paid in a Capacity Zone when the Carry Forward Rule is triggered. In accordance with Section III.13.2.7.9.2 of the Tariff, the Capacity Clearing Price for both new and existing resources in the NEMA/Boston Capacity Zone would be \$10.00/kW-month. However, under Section III.13.2.7.1 of the Tariff, if the Capacity Clearing Price in an import-constrained Capacity Zone is lower than the Capacity Clearing Price in Rest-of-Pool, then all resources in the import-constrained zone will be paid the Capacity Clearing Price in Rest-of-Pool for the relevant Capacity Commitment Period. Therefore, because the Capacity Clearing Price in Rest-of-Pool is \$15.00/kW-month, pursuant to Section III.13.2.7.1 of the Tariff, all resources (both new and existing) in the NEMA/Boston Capacity Zone will be paid \$15.00/kW-month for the 2017-2018 Capacity Commitment Period.

C. Capacity Supply Obligations

The Tariff requires the ISO to specify in the FCA Results Filing the resources which received Capacity Supply Obligations in each Capacity Zone. This information is provided in Attachment A.

The Tariff also requires the ISO to list which resources cleared as Conditional Qualified New Generating Capacity Resources and to provide certain information relating to Long Lead Time Generating Facilities. No resources cleared as Conditional Qualified New Generating Capacity Resources in the eighth FCA and there were no Long Lead Time Generating Facilities that secured a Queue Position to participate as a New Generating Capacity Resource in the

5

⁶ Tariff Section III.13.8.2 (a).

⁷ *Id*.

eighth FCA nor were any resources with a lower queue priority that were selected in the FCA subject to a Long Lead Time Generating Facility with the higher queue priority.

D. De-List Bids Reviewed For Reliability Purposes

The Tariff requires the FCA Results Filing to enumerate any de-list bids rejected for reliability. No de-list bids were rejected for reliability.

V. DOCUMENTATION OF COMPETITIVENESS

Section III.13.8.2 (b) of the Tariff requires the ISO to provide documentation regarding the competitiveness of the FCA. The documentation may include certification from the auctioneer and the ISO that: (i) all resources offering and bidding in the FCA were properly qualified in accordance with the provisions of Section III.13.1 of the Tariff; and (ii) the FCA was conducted in accordance with the provisions of Section III.13 of the Tariff. In this regard, the ISO has included the Rourke Testimony, the LaPlante Testimony, and the Ausubel Testimony.

In his testimony, Mr. Rourke, who oversaw the qualification of resources, certifies that all resources offering and bidding in the eighth FCA were qualified in accordance with Section III.13.1 of the Tariff. Mr. Rourke testifies that he oversaw the reliability review of all submitted de-list bids for the eighth FCA and that no de-list bids were retained for reliability. Mr. Rourke also explains the ISO's conclusion regarding the auction prices resulting from the auction.

Mr. LaPlante explains the decision to conduct the first round of the auction with an end-of-round price of \$3.00/kW-month. ¹² Mr. LaPlante also explains that the IMM reviewed de-list bids from existing resources and offers from new resources submitted during the qualification process. ¹³ Mr. LaPlante testifies that he oversaw the IMM's review of these bids and offers and certifies that such review was performed in accordance with the provisions of Section III.13.1. ¹⁴ Mr. LaPlante also notes that the IMM's determinations with respect to the offers and bids were approved by the Commission in the Informational Filing Order. ¹⁵ Finally, with respect to the NEMA/Boston Capacity Zone, Mr. LaPlante testifies that when there is Insufficient Competition, the application of Section III.13.2.7.1 of the Tariff replaces the price set using the Carry Forward Rule with the results of a non-competitive auction. ¹⁶

⁸ *Id*.

⁹ Rourke Testimony at 5.

¹⁰ *Id.* at 3.

¹¹ *Id.* at 4-5.

¹² LaPlante Testimony at 3-4.

¹³ *Id.* at 2-3.

¹⁴ *Id*.

¹⁵ Order Accepting Informational Filing, 146 FERC ¶ 61,014 (2014); see also LaPlante Testimony at 3.

¹⁶ LaPlante Testimony at 7.

Mr. Ausubel, the auctioneer and chairman and founder of Power Auctions LLC, the company that helped implement and administer the FCA, certifies that the auction was conducted in accordance with Section III.13.¹⁷ Mr. Ausubel's certification is based on his vast experience in conducting energy auctions. Mr. Ausubel also testifies to the mechanics of the auction, including why \$3.00/kW-month was chosen as the end-of-round price for the first round of the auction. ¹⁸

VI. ADDITIONAL SUPPORTING INFORMATION

The ISO tenders the instant filing in compliance with Section III.13.8.2 of its Tariff pursuant to Section 205 of the FPA. Section 35.13 of the Commission's regulations generally requires public utilities to file certain cost and other information related to an examination of cost-of-service rates. However, the results of the FCA are not traditional "rates" and the ISO is not a traditional investor-owned utility. Therefore, to the extent necessary, the ISO requests waiver of Section 35.13 of the Commission's regulations. Notwithstanding its request for waiver, the ISO submits the following additional information in compliance with the identified filing regulations of the Commission applicable to Section 205.

35.13(b)(1) - Materials included herewith are as follows:

a. This transmittal letter;

b. Attachment A: List of Capacity Supply Obligations;

c. Attachment B: Testimony of Stephen J. Rourke;

d. Attachment C: Testimony of David LaPlante;

e. Attachment D: Testimony of Lawrence M. Ausubel; and

f. Attachment E: List of governors and utility regulatory agencies in

Connecticut, Maine, Massachusetts, New

Hampshire, Rhode Island, Vermont to which a copy

of this filing has been emailed.

¹⁹ As was noted above, the Commission has consistently held that the scope of the proceeding evaluating the annual FCA results filing is limited to the results of the FCA. *See e.g., ISO New England Inc.*, 130 FERC ¶ 61,145 at P 33 (2010) (finding that challenges to the FCM market design are outside the scope of the proceeding evaluating the FCA results filing).

¹⁷ Ausubel Testimony at 3.

¹⁸ *Id.* at 4.

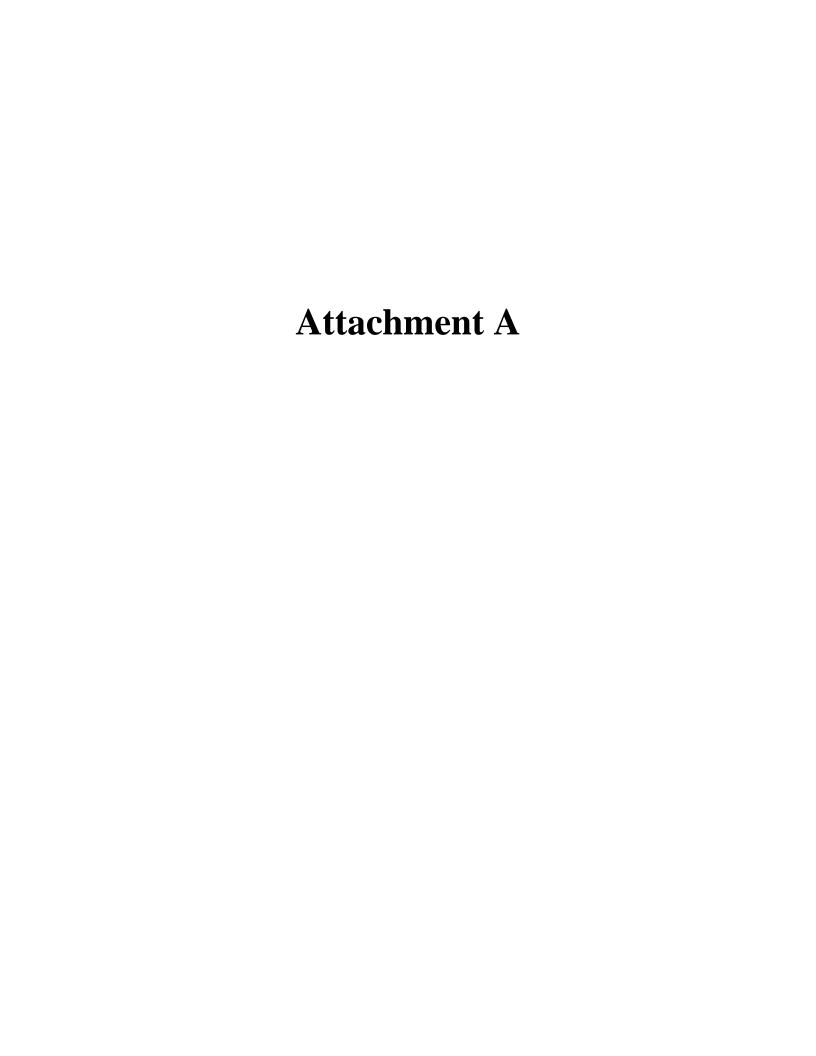
²⁰ 18 C.F.R. § 35.13 (2013).

- <u>35.13(b)(2)</u> The ISO respectfully requests that the Commission accept this filing to become effective on June 28, 2014, which is 120 days after the submission of this FCA Results Filing.
- 35.13(b)(3) Pursuant to Section 17.11 (e) of the Participants Agreement, Governance Participants are being served electronically rather than by paper copy. The names and addresses of the Governance Participants are posted on the ISO's website at http://www.iso-ne.com/committees/nepool_part/index.html. An electronic copy of this transmittal letter and the accompanying materials has also been emailed to the governors and electric utility regulatory agencies for the six New England states which comprise the New England Control Area, and to the New England Conference of Public Utility Commissioners, Inc. The names and addresses of these governors and regulatory agencies are shown in Attachment E.
- <u>35.13(b)(4)</u> A description of the materials submitted pursuant to this filing is contained in the transmittal letter;
- 35.13(b)(5) The reasons for this filing are discussed in the background section to this transmittal letter; and
- <u>35.13 (b)(7)</u> The ISO has no knowledge of any relevant expenses or cost of service that have been alleged or judged in any administrative or judicial proceeding to be illegal, duplicative, or unnecessary costs that are demonstrably the product of discriminatory employment practices.

VII. CONCLUSION

In this FCA Results Filing, the ISO has presented all of the information required by the Tariff. The ISO has demonstrated that the eighth FCA was conducted in accordance with the Tariff, as found just and reasonable by the Commission. The ISO has specified the Capacity Zones that resulted from the auction. The ISO has also provided the Capacity Clearing Price for each of the Capacity Zones and a list of resources that received Capacity Supply Obligations. Finally, the ISO has provided documentation in the form of testimony, regarding the outcome of the eighth FCA. Accordingly, the ISO requests that the Commission accept the results of the eighth FCA within 120 days of this filing.

Respectfully submitted,


By: /s/Raymond Hepper

Raymond W. Hepper, Esq. Kevin Flynn, Esq. ISO New England Inc. One Sullivan Road Holyoke, MA 01040-2841 Tel: (413) 540-4592

Fax: (413) 535-4379

E-mail: rhepper@iso-ne.com kflynn@iso-ne.com

4841-9504-7705, v. 1

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
	FOUR HILLS LOAD			Name Rest-of-		New													
194	REDUCER TURNKEY	Generator	8500	Pool Rest-of-	NH	Hampshire New	Existing	0.842	0.842	0.842	0.842	1.335	1.335	1.335	1.335	1.335	1.335	1.335	1.335
253	LANDFILL	Generator	8500	Pool	NH	Hampshire	Existing	1.578	1.578	1.578	1.578	1.719	1.719	1.719	1.719	1.719	1.719	1.719	1.719
321	MANCHESTER 10 10A CC	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	149	149	149	149	149	149	149	149	149	149	149	149
322	MANCHESTER 11 11A CC	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	149	149	149	149	149	149	149	149	149	149	149	149
323	MANCHESTER 9 9A CC	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	149	149	149	149	149	149	149	149	149	149	149	149
324	CDECCA	Generator	8501	Connectic ut	ст	Connecticut	Existing	55.254	55.254	55.254	55.254	55.254	55.254	55.254	55.254	55.254	55.254	55.254	55.254
326	ALTRESCO	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	150.972	150.972	150.972	150.972	150.972	150.972	150.972	150.972	150.972	150.972	150.972	150.972
327	AMOSKEAG	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
328	GULF ISLAND COMPOSITE Incremental	Generator	8503	Maine	ME	Maine	Existing	38.915	38.915	38.915	38.915	38.915	38.915	38.915	38.915	38.915	38.915	38.915	38.915
329	ASCUTNEY GT	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	8.94	8.94	8.94	8.94	8.94	8.94	8.94	8.94	8.94	8.94	8.94	8.94
330	AYERS ISLAND	Generator	8500	Rest-of-	NH	New Hampshire	Existing	8.474	8.474	8.474	8.474	8.474	8.474	8.474	8.474	8.474	8.474	8.474	8.474
	AZISCOHOS																		
331	HYDRO	Generator	8503	Maine Rest-of-	ME	Maine New	Existing	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8
335	BELLOWS FALLS	Generator	8500	Pool Rest-of-	NH	Hampshire	Existing	48.54	48.54	48.54	48.54	48.54	48.54	48.54	48.54	48.54	48.54	48.54	48.54
336	BERLIN 1 GT	Generator	8500	Pool Rest-of-	VT	Vermont New	Existing	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83	34.83
337	BETHLEHEM	Generator	8500	Pool	NH	Hampshire	Existing	15.35	15.35	15.35	15.35	15.394	15.394	15.394	15.394	15.394	15.394	15.394	15.394
340	BRIDGEPORT HARBOR 3	Generator	8501	Connectic ut	ст	Connecticut	Existing	383.426	383.426	383.426	383.426	383.426	383.426	383.426	383.426	383.426	383.426	383.426	383.426
341	BRIDGEPORT HARBOR 4	Generator	8501	Connectic ut Rest-of-	ст	Connecticut	Existing	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1
346	BOLTON FALLS	Generator	8500	Pool	VT	Vermont	Existing	1.494	1.494	1.494	1.494	4.483	4.483	4.483	4.483	4.483	4.483	4.483	4.483
348	BOOT MILLS	Generator	8500	Rest-of- Pool	МА	WCMASS	Existing	7.479	7.479	7.479	7.479	11.593	11.593	11.593	11.593	11.593	11.593	11.593	11.593
349	WHEELABRATOR BRIDGEPORT, L.P.	Generator	8501	Connectic ut Connectic	ст	Connecticut	Existing	59.439	59.439	59.439	59.439	59.939	59.939	59.939	59.939	59.939	59.939	59.939	59.939
355	BRANFORD 10	Generator	8501	ut Connectic	СТ	Connecticut	Existing	15.84	15.84	15.84	15.84	15.84	15.84	15.84	15.84	15.84	15.84	15.84	15.84
356	BRISTOL REFUSE	Generator	8501	ut Rest-of-	СТ	Connecticut New	Existing	12.365	12.365	12.365	12.365	12.665	12.665	12.665	12.665	12.665	12.665	12.665	12.665
357	BRIDGEWATER	Generator	8500	Pool	NH	Hampshire	Existing	14.761	14.761	14.761	14.761	14.753	14.753	14.753	14.753	14.753	14.753	14.753	14.753
358	BRUNSWICK	Generator	8503	Maine	ME	Maine	Existing	10.214	10.214	10.214	10.214	14.769	14.769	14.769	14.769	14.769	14.769	14.769	14.769
359	J. COCKWELL 1	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	184.306	184.306	184.306	184.306	184.306	184.306	184.306	184.306	184.306	184.306	184.306	184.306
360	J. COCKWELL 2	Generator	8500	Rest-of- Pool	МА	WCMASS	Existing	284.638	284.638	284.638	284.638	284.638	284.638	284.638	284.638	284.638	284.638	284.638	284.638
362	BULLS BRIDGE	Generator	8501	Connectic	ст	Connecticut	Existing	3.317	3.317	3.317	3.317	6.496	6.496	6.496	6.496	6.496	6.496	6.496	6.496
363	BURLINGTON GT	Generator	8500	Rest-of-	VT	Vermont	Existing	18.209	18.209	18.209	18.209	18.209	18.209	18.209	18.209	18.209	18.209	18.209	18.209
365	CANAL 1	Generator	8500	Rest-of- Pool Rest-of-	МА	SEMASS	Existing	547.059	547.059	547.059	547.059	547.059	547.059	547.059	547.059	547.059	547.059	547.059	547.059
366	CANAL 2	Generator	8500	Pool	МА	SEMASS	Existing	545.125	545.125	545.125	545.125	545.125	545.125	545.125	545.125	545.125	545.125	545.125	545.125
367	CAPE GT 4	Generator	8503	Maine	ME	Maine	Existing	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
368	CAPE GT 5	Generator	8503	Maine	ME	Maine	Existing	15.822	15.822	15.822	15.822	15.822	15.822	15.822	15.822	15.822	15.822	15.822	15.822
369	CATARACT EAST	Generator	8503	Maine Connectic	ME	Maine	Existing	7.775	7.775	7.775	7.775	7.775	7.775	7.775	7.775	7.775	7.775	7.775	7.775
370	COS COB 10	Generator	8501		ст	Connecticut	Existing	19.028	19.028	19.028	19.028	19.028	19.028	19.028	19.028	19.028	19.028	19.028	19.028
371	COS COB 11	Generator	8501	ut Connectic	ст	Connecticut	Existing	18.724	18.724	18.724	18.724	18.724	18.724	18.724	18.724	18.724	18.724	18.724	18.724
372	COS COB 12	Generator	8501	ut Rest-of-	СТ	Connecticut	Existing	18.66	18.66	18.66	18.66	18.66	18.66	18.66	18.66	18.66	18.66	18.66	18.66
375	CLEARY 9 9A CC	Generator	8500	Pool Rest-of-	MA	SEMASS	Existing	104.931	104.931	104.931	104.931	104.931	104.931	104.931	104.931	104.931	104.931	104.931	104.931
376	CLEARY 8	Generator	8500	Pool	МА	SEMASS	Existing	25.853	25.853	25.853	25.853	25.853	25.853	25.853	25.853	25.853	25.853	25.853	25.853
379	COBBLE MOUNTAIN	Generator	8500		MA	WCMASS	Existing	31.884	31.884	31.884	31.884	31.884	31.884	31.884	31.884	31.884	31.884	31.884	31.884
380	COMERFORD	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	158.267	158.267	158.267	158.267	158.267	158.267	158.267	158.267	158.267	158.267	158.267	158.267

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
382	MERRIMACK CT1	Generator	8500	Name Rest-of- Pool	NH	New Hampshire	Existing	16.826	16.826	16.826	16.826	16.826	16.826	16.826	16.826	16.826	16.826	16.826	16.826
383	MERRIMACK CT2	Generator	8500	Rest-of-	NH	New Hampshire	Existing	16.804	16.804	16.804	16.804	16.804	16.804	16.804	16.804	16.804	16.804	16.804	16.804
303	DARTMOUTH	Generator	0300	Rest-of-		патрэт	Existing	10.004	10.001	10.001	10.004	10.001	10.001	10.001	10.001	10.004	10.004	10.001	10.001
388	POWER	Generator	8500		MA	SEMASS	Existing	62.156	62.156	62.156	62.156	62.156	62.156	62.156	62.156	62.156	62.156	62.156	62.156
389	DERBY DAM	Generator	8501	ut Connectic	СТ	Connecticut	Existing	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05
392	DEXTER	Generator	8501	ut Rest-of-	СТ	Connecticut	Existing	31.308	31.308	31.308	31.308	31.308	31.308	31.308	31.308	31.308	31.308	31.308	31.308
393	DEERFIELD 5	Generator	8500	Pool Rest-of-	MA	WCMASS	Existing	13.703	13.703	13.703	13.703	13.703	13.703	13.703	13.703	13.703	13.703	13.703	13.703
395	DOREEN	Generator	8500	Pool Connectic	MA	WCMASS	Existing	15.959	15.959	15.959	15.959	15.959	15.959	15.959	15.959	15.959	15.959	15.959	15.959
396	DEVON 10	Generator	8501	ut Connectic	СТ	Connecticut	Existing	14.407	14.407	14.407	14.407	14.407	14.407	14.407	14.407	14.407	14.407	14.407	14.407
397	DEVON 11	Generator	8501	ut Connectic	СТ	Connecticut	Existing	29.299	29.299	29.299	29.299	29.299	29.299	29.299	29.299	29.299	29.299	29.299	29.299
398	DEVON 12	Generator	8501	ut Connectic	СТ	Connecticut	Existing	29.227	29.227	29.227	29.227	29.227	29.227	29.227	29.227	29.227	29.227	29.227	29.227
399	DEVON 13	Generator	8501	ut Connectic	СТ	Connecticut	Existing	29.967	29.967	29.967	29.967	29.967	29.967	29.967	29.967	29.967	29.967	29.967	29.967
400	DEVON 14	Generator	8501	ut Rest-of-	СТ	Connecticut New	Existing	29.704	29.704	29.704	29.704	29.704	29.704	29.704	29.704	29.704	29.704	29.704	29.704
401	EASTMAN FALLS	Generator	8500	Pool	NH	Hampshire	Existing	5.582	5.582	5.582	5.582	5.582	5.582	5.582	5.582	5.582	5.582	5.582	5.582
405	ELLSWORTH HYDRO	Generator	8503	Maine	ME	Maine	Existing	8.821	8.821	8.821	8.821	8.821	8.821	8.821	8.821	8.821	8.821	8.821	8.821
407	EASTPORT DIESELS 1-3	Generator	8503	Maine	ME	Maine	Existing	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
410	ESSEX 19 HYDRO	Generator	8500	Rest-of-	VT	Vermont	Existing	2.838	2.838	2.838	2.838	6.637	6.637	6.637	6.637	6.637	6.637	6.637	6.637
411	EXETER	Generator	8501	Connectic ut	ст	Connecticut	Existing	18.805	18.805	18.805	18.805	19.447	19.447	19.447	19.447	19.447	19.447	19.447	19.447
412	FALLS VILLAGE	Generator	8501	Connectic ut	ст	Connecticut	Existing	3.292	3.292	3.292	3.292	6.11	6.11	6.11	6.11	6.11	6.11	6.11	6.11
413	FIFE BROOK	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	6.089	6.089	6.089	6.089	6.089	6.089	6.089	6.089	6.089	6.089	6.089	6.089
	FRAMINGHAM			NEMA-															
417	JET 1	Generator	8502	Boston	MA	NEMA-Boston	Existing	10.519	10.519	10.519	10.519	10.519	10.519	10.519	10.519	10.519	10.519	10.519	10.519
418	FRAMINGHAM JET 2	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	11	11	11	11	11	11	11	11	11	11	11	11
419	FRAMINGHAM JET 3	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25	11.25
420	FRANKLIN DRIVE	Generator	8501	Connectic	ст	Connecticut	Existing	15.417	15.417	15.417	15.417	15.417	15.417	15.417	15.417	15.417	15.417	15.417	15.417
421	FRONT STREET DIESELS 1-3	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	8.286	8.286	8.286	8.286	8.286	8.286	8.286	8.286	8.286	8.286	8.286	8.286
424	GREAT LAKES - MILLINOCKET	Generator	8503	Maine	ME	Maine	Existing	37.793	37.793	37.793	37.793	37.793	37.793	37.793	37.793	37.793	37.793	37.793	37.793
426	GORGE 1 DIESEL	Generator	8500	Rest-of-	VT	Vermont	Existing	7.09	7.09	7.09	7.09	7.09	7.09	7.09	7.09	7.09	7.09	7.09	7.09
427	GORHAM	Generator	8500	Rest-of-	NH	New Hampshire	Existing	1.12	1.12	1.12	1.12	1.646	1.646	1.646	1.646	1.646	1.646	1.646	1.646
429	GREENVILLE	Generator	8503	Maine	ME	Maine	Existing	5.848	5.848	5.848	5.848	8.45	8.45	8.45	8.45	8.45	8.45	8.45	8.45
432 433	HARRIS 1 HARRIS 2	Generator Generator	8503 8503	Maine Maine	ME ME	Maine Maine	Existing Existing	16.79 34.865											
434	HARRIS 3	Generator	8503	Maine Rest-of-	ME	Maine	Existing	34	34	34	34	34	34	34	34	34	34	34	34
435	HARRIMAN	Generator	8500		MA	WCMASS New	Existing	41.039	41.039	41.039	41.039	38.663	38.663	38.663	38.663	38.663	38.663	38.663	38.663
436	HEMPHILL 1	Generator	8500	Pool	NH	Hampshire	Existing	14.137	14.137	14.137	14.137	14.45	14.45	14.45	14.45	14.45	14.45	14.45	14.45
440	HIRAM	Generator	8503	Maine	ME	Maine	Existing	11.189	11.189	11.189	11.189	11.189	11.189	11.189	11.189	11.189	11.189	11.189	11.189
445	COVANTA WEST ENFIELD	Generator	8503	Maine	ME	Maine	Existing	20.461	20.461	20.461	20.461	20.461	20.461	20.461	20.461	20.461	20.461	20.461	20.461
	COVANTA																		
446	JONESBORO	Generator	8503	Maine NEMA-	ME	Maine	Existing	20.226	20.226	20.226	20.226	20.226	20.226	20.226	20.226	20.226	20.226	20.226	20.226
448	IPSWICH DIESELS	Generator	8502	Boston Rest-of-	MA	NEMA-Boston New	Existing	9.495	9.495	9.495	9.495	9.495	9.495	9.495	9.495	9.495	9.495	9.495	9.495
449	JACKMAN	Generator	8500		NH	Hampshire	Existing	2.957	2.957	2.957	2.957	2.957	2.957	2.957	2.957	2.957	2.957	2.957	2.957
452	KENDALL JET 1	Generator	8502	Boston	MA	NEMA-Boston	Existing	18	18	18	18	18	18	18	18	18	18	18	18
457	LAWRENCE HYDRO	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	5.49	5.49	5.49	5.49	8.774	8.774	8.774	8.774	8.774	8.774	8.774	8.774
460	LOCKWOOD	Generator	8503	Maine	ME	Maine	Existing	3.652	3.652	3.652	3.652	4.721	4.721	4.721	4.721	4.721	4.721	4.721	4.721
	LISBON RESOURCE			Connectic															
462	RECOVERY	Generator	8501		СТ	Connecticut	Existing	13.701	13.701	13.701	13.701	13.812	13.812	13.812	13.812	13.812	13.812	13.812	13.812

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
			Zone is	Name															
463	AEI LIVERMORE	Generator	8503	Maine Rest-of-	ME	Maine New	Existing	34.695	34.695	34.695	34.695	34.695	34.695	34.695	34.695	34.695	34.695	34.695	34.695
464	LOST NATION	Generator	8500		NH	Hampshire	Existing	14.069	14.069	14.069	14.069	14.069	14.069	14.069	14.069	14.069	14.069	14.069	14.069
465	DEERFIELD 2 LWR DRFIELD	Generator	8500		МА	WCMASS	Existing	19.275	19.275	19.275	19.275	19.275	19.275	19.275	19.275	19.275	19.275	19.275	19.275
466	L STREET JET	Generator	8502	NEMA- Boston	МА	NEMA-Boston	Existing	16.03	16.03	16.03	16.03	16.03	16.03	16.03	16.03	16.03	16.03	16.03	16.03
467	MARBLEHEAD DIESELS	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	5	5	5	5	5	5	5	5	5	5	5	5
473	MCINDOES	Generator	8500	Rest-of-	NH	New Hampshire	Existing	10.066	10.066	10.066	10.066	10.066	10.066	10.066	10.066	10.066	10.066	10.066	10.066
474	J C MCNEIL	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	52	52	52	52	52	52	52	52	52	52	52	52
478	MIDDLETOWN 10	Generator	8501		ст	Connecticut	Existing	17.123	17.123	17.123	17.123	17.123	17.123	17.123	17.123	17.123	17.123	17.123	17.123
480	MIDDLETOWN 2	Generator	8501	Connectic	ст	Connecticut	Existing	117	117	117	117	117	117	117	117	117	117	117	117
481	MIDDLETOWN 3	Generator	8501	Connectic ut Connectic	ст	Connecticut	Existing	236	236	236	236	236	236	236	236	236	236	236	236
482	MIDDLETOWN 4	Generator	8501		ст	Connecticut	Existing	400	400	400	400	400	400	400	400	400	400	400	400
484	MILLSTONE POINT	Generator	8501	Connectic ut	ст	Connecticut	Existing	875.26	875.26	875.26	875.26	875.26	875.26	875.26	875.26	875.26	875.26	875.26	875.26
	MILLSTONE POINT			Connectic															
485	3	Generator	8501	ut Rest-of-	СТ	Connecticut	Existing	1225	1225	1225	1225	1225	1225	1225	1225	1225	1225	1225	1225
486	MILFORD POWER	Generator	8500		MA	SEMASS	Existing	149	149	149	149	149	149	149	149	149	149	149	149
487	MILLER HYDRO	Generator		Maine Rest-of-	ME	Maine New	Existing	9.146	9.146	9.146	9.146	12.226	12.226	12.226	12.226	12.226	12.226	12.226	12.226
489	MERRIMACK 1	Generator	8500	Rest-of-	NH	Hampshire New	Existing	112.5 335.487	112.5 335.487	112.5 335.487	112.5 335.487	112.5 335.487	335.487	112.5 335.487	112.5 335.487	112.5 335.487	112.5 335.487	112.5 335.487	112.5
490	MERRIMACK 2 MONTVILLE 10	Generator	8500	Connectic	NH	Hampshire	Existing	335.487	335.487	335.487	335.487	335.487	335.487	335.487	335.487	335.487	335.487	335.487	335.487
492	and 11	Generator	8501	ut Connectic	СТ	Connecticut	Existing	5.296	5.296	5.296	5.296	5.296	5.296	5.296	5.296	5.296	5.296	5.296	5.296
493	MONTVILLE 5	Generator	8501	ut Connectic	ст	Connecticut	Existing	81	81	81	81	81	81	81	81	81	81	81	81
494 495	MONTVILLE 6 MONTY	Generator Generator	8501 8503	ut Maine	CT ME	Connecticut Maine	Existing Existing	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28	407.401 28
496	MOORE	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	189.976	189.976	189.976	189.976	189.976	189.976	189.976	189.976	189.976	189.976	189.976	189.976
497	MASS POWER	Generator	8500		MA	WCMASS	Existing	240	240	240	240	240	240	240	240	240	240	240	240
498	мт том	Generator	8500		МА	WCMASS	Existing	0	0	0	0	0	0	0	0	0	0	0	0
502	MYSTIC 7	Generator	8502	NEMA- Boston NEMA-	МА	NEMA-Boston	Existing	559.775	559.775	559.775	559.775	559.775	559.775	559.775	559.775	559.775	559.775	559.775	559.775
503	MYSTIC JET	Generator	8502		МА	NEMA-Boston	Existing	7.646	7.646	7.646	7.646	7.646	7.646	7.646	7.646	7.646	7.646	7.646	7.646
507	NEA BELLINGHAM	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	277.621	277.621	277.621	277.621	277.621	277.621	277.621	277.621	277.621	277.621	277.621	277.621
508	NEWINGTON 1	Generator	8500	Rest-of-	NH	New Hampshire	Existing	400.2	400.2	400.2	400.2	400.2	400.2	400.2	400.2	400.2	400.2	400.2	400.2
	NEW HAVEN			Connectic															
513	HARBOR	Generator	8501	Connectic	СТ	Connecticut	Existing	447.894	447.894	447.894	447.894	447.894	447.894	447.894	447.894	447.894	447.894	447.894	
515	NORWICH JET	Generator	8501		СТ	Connecticut	Existing	15.255	15.255	15.255	15.255	15.255	15.255	15.255	15.255	15.255	15.255	15.255	15.255
527	OGDEN-MARTIN 1	Generator	8502	NEMA- Boston	МА	NEMA-Boston	Existing	39.33	39.33	39.33	39.33	41.412	41.412	41.412	41.412	41.412	41.412	41.412	41.412
	OCEAN ST PWR			Rest-of-															
528	GT1 GT2 ST1	Generator	8500		RI	Rhode Island	Existing	270.901	270.901	270.901	270.901	273.277	273.277	273.277	273.277	273.277	273.277	273.277	273.277
	OCEAN ST PWR			Rest-of-															
529	GT3 GT4 ST2	Generator	8500	Pool	RI	Rhode Island	Existing	270.18	270.18	270.18	270.18	270.18	270.18	270.18	270.18	270.18	270.18	270.18	270.18
531	PAWTUCKET POWER	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	59.81	59.81	59.81	59.81	59.81	59.81	59.81	59.81	59.81	59.81	59.81	59.81
532	PEJEPSCOT	Generator	8503	Maine	ME	Maine	Existing	7.443	7.443	7.443	7.443	10.486	10.486	10.486	10.486	10.486	10.486	10.486	10.486
536	PERC-ORRINGTON	Conortin	0500	Main -	NAT.	Maine	Eulet's =	24 000	24 000	24.005	24.000	20.752	20.752	20.752	20.752	20.752	20 752	20.752	20.752
536	PILGRIM	Generator	8503	Maine	ME	Maine	Existing	21.086	21.086	21.086	21.086	20.752	20.752	20.752	20.752	20.752	20.752	20.752	20.752
537	NUCLEAR POWER STATION	Generator	8500	Rest-of- Pool	МА	SEMASS	Existing	677.284	677.284	677.284	677.284	677.284	677.284	677.284	677.284	677.284	677.284	677.284	677.284
538	PINETREE POWER		8500	Rest-of-	MA	WCMASS	Existing	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151
539			8500	Rest-of-	NH	New Hampshire	Existing	5.467	5.467	5.467	5.467	9.411	9.411	9.411	9.411	9.411	9.411	9.411	9.411
540	POTTER 2 CC	Generator	8500	Rest-of-	MA	SEMASS	Existing	74.19	74.19	74.19	74.19	74.19	74.19	74.19	74.19	74.19	74.19	74.19	74.19
541	PROCTOR	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	2.1	2.1	2.1	2.1	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
542	ECO MAINE	Generator	8503	Name Maine	ME	Maine	Existing	10.886	10.886	10.886	10.886	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
546	RESCO SAUGUS	Generator		NEMA- Boston	MA	NEMA-Boston	Existing	30.114	30.114	30.114	30.114	30.114	30.114	30.114	30.114	30.114	30.114	30.114	30.114
	WHEELABRATOR			NEMA-															
555	NORTH ANDOVER SEABROOK			Rest-of-	MA	NEMA-Boston New Hampshire	Existing Existing	29.622 1245.463	29.622 1245.463	29.622 1245.463	29.622 1245.463	29.768 1245.463							
556	SCHILLER 4	Generator Generator	8500 8500	Pool Rest-of- Pool	NH NH	New Hampshire	Existing	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5
557	SCHILLER 5	Generator	8500	Rest-of-	NH	New Hampshire	Existing	43.082	43.082	43.082	43.082	43.082	43.082	43.082	43.082	43.082	43.082	43.082	43.082
558	SCHILLER 6	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	47.938	47.938	47.938	47.938	47.938	47.938	47.938	47.938	47.938	47.938	47.938	47.938
559	SCHILLER CT 1	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	17.621	17.621	17.621	17.621	17.621	17.621	17.621	17.621	17.621	17.621	17.621	17.621
561	SEARSBURG	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	4.755	4.755	4.755	4.755	4.755	4.755	4.755	4.755	4.755	4.755	4.755	4.755
562	SECREC-PRESTON	Generator	8501	Connectic	ст	Connecticut	Existing	16.366	16.366	16.366	16.366	16.629	16.629	16.629	16.629	16.629	16.629	16.629	16.629
563	SEMASS 1	Generator	8500		MA	SEMASS	Existing	46.955	46.955	46.955	46.955	49.057	49.057	49.057	49.057	49.057	49.057	49.057	49.057
564	SEMASS 2	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	22.096	22.096	22.096	22.096	25.002	25.002	25.002	25.002	25.002	25.002	25.002	25.002
	SHELDON			Rest-of-										40.400		40.400			
565	SPRINGS SHEPAUG	Generator	8500	Pool Connectic	VT	Vermont Connecticut	Existing	4.598	4.598	4.598	4.598	10.498	10.498	10.498	10.498	10.498	10.498	10.498	10.498
566	SHERMAN	Generator	8501 8500	ut Rest-of- Pool	MA MA	WCMASS	Existing Existing	6.154	6.154	41.511 6.154	6.154	6.154	41.86 6.154	41.86 6.154	41.86 6.154	6.154	6.154	6.154	6.154
569	SKELTON	Generator	8503	Maine Rest-of-	ME	Maine New	Existing	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08	22.08
570	SMITH	Generator	8500	Pool	NH	Hampshire	Existing	10.632	10.632	10.632	10.632	15.729	15.729	15.729	15.729	15.729	15.729	15.729	15.729
572	SO. MEADOW 11	Generator	8501	Connectic	ст	Connecticut	Existing	35.781	35.781	35.781	35.781	35.781	35.781	35.781	35.781	35.781	35.781	35.781	35.781
			3002	Connectic															
573	SO. MEADOW 12	Generator	8501	ut	СТ	Connecticut	Existing	37.701	37.701	37.701	37.701	37.701	37.701	37.701	37.701	37.701	37.701	37.701	37.701
574	SO. MEADOW 13	Generator	8501	Connectic ut	ст	Connecticut	Existing	38.317	38.317	38.317	38.317	38.317	38.317	38.317	38.317	38.317	38.317	38.317	38.317
				Connectic															
575	SO. MEADOW 14	Generator	8501	ut	СТ	Connecticut	Existing	36.746	36.746	36.746	36.746	36.746	36.746	36.746	36.746	36.746	36.746	36.746	36.746
580	SO. MEADOW 5	Generator	8501	Connectic ut	СТ	Connecticut	Existing	24.016	24.016	24.016	24.016	25.295	25.295	25.295	25.295	25.295	25.295	25.295	25.295
				Connectic															
581	SO. MEADOW 6	Generator	8501		СТ	Connecticut	Existing	24.125	24.125	24.125	24.125	23.598	23.598	23.598	23.598	23.598	23.598	23.598	23.598
583	STONY BROOK 2A	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	65	65	65	65	65	65	65	65	65	65	65	65
504	CTONIV BROOK 2B		0500	Rest-of-		NACO A A CC	Following .	62	62	62	62	62	62	-	62	62	62	-	-
584	STONY BROOK 2B STEVENSON	Generator	8500 8501	Connectic	MA	WCMASS Connecticut	Existing	63	63	28.311	28.311	28.311	28.311	28.311	28.311	28.311	63	63	28.311
367	BORALEX	Generator	6501	ut	СТ	Connecticut	Existing	28.311	28.311	20.511	20.511	20.311	20.311	20.311	20.511	20.511	28.311	28.311	26.511
590	STRATTON ENERGY	Generator	8503	Maine	ME	Maine	Existing	45.024	45.024	45.024	45.024	45.024	45.024	45.024	45.024	45.024	45.024	45.024	45.024
			3000																
591	S.D. WARREN- WESTBROOK	Generator	8503	Maine	ME	Maine	Existing	42.59	42.59	42.59	42.59	42.59	42.59	42.59	42.59	42.59	42.59	42.59	42.59
592	TAMWORTH	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	19.302	19.302	19.302	19.302	19.172	19.172	19.172	19.172	19.172	19.172	19.172	19.172
595	TORRINGTON TERMINAL 10	Generator	8501		ст	Connecticut	Existing	15.638	15.638	15.638	15.638	15.638	15.638	15.638	15.638	15.638	15.638	15.638	15.638
596	TUNNEL 10	Generator	8501	Connectic ut	ст	Connecticut	Existing	16.962	16.962	16.962	16.962	16.962	16.962	16.962	16.962	16.962	16.962	16.962	16.962
598	VERGENNES 5 and 6 DIESELS	Generator	8500		VT	Vermont	Existing	3.94	3.94	3.94	3.94	3.94	3.94	3.94	3.94	3.94	3.94	3.94	3.94
599	VERNON	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	32	32	32	32	32	32	32	32	32	32	32	32
	WATERS RIVER			NEMA-															
612	JET 1	Generator	8502	Boston	MA	NEMA-Boston	Existing	16.05	16.05	16.05	16.05	16.05	16.05	16.05	16.05	16.05	16.05	16.05	16.05
613	WATERS RIVER JET 2	Generator	8502	NEMA- Boston	МА	NEMA-Boston	Existing	33.756	33.756	33.756	33.756	33.756	33.756	33.756	33.756	33.756	33.756	33.756	33.756
614	WATERBURY 22	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	5	5	5	5	5	5	5	5	5	5	5	5
616	WEST ENFIELD	Generator		Maine	ME	Maine	Existing	10.386	10.386	10.386	10.386	14.597	14.597	14.597	14.597	14.597	14.597	14.597	14.597
617	DG WHITEFIELD,	Generator	8503	Maine Post of	ME	Maine	Existing	9.529	9.529	9.529	9.529	12.054	12.054	12.054	12.054	12.054	12.054	12.054	12.054
618	DG WHITEFIELD, LLC	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	15.796	15.796	15.796	15.796	16.127	16.127	16.127	16.127	16.127	16.127	16.127	16.127

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
619	WHITE LAKE JET	Generator	8500	Name Rest-of- Pool	NH	New Hampshire	Existing	17.447	17.447	17.447	17.447	17.447	17.447	17.447	17.447	17.447	17.447	17.447	17.447
620	WILDER	Generator	8500	Rest-of-	NH	New Hampshire	Existing	41.16	41.16	41.16	41.16	41.16	41.16	41.16	41.16	41.16	41.16	41.16	41.16
621	WILLIAMS	Generator	8503	Maine	ME	Maine	Existing	14.9	14.9	14.9	14.9	14.9	14.9	14.9	14.9	14.9	14.9	14.9	14.9
622	WINOOSKI 1	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	1.804	1.804	1.804	1.804	4.207	4.207	4.207	4.207	4.207	4.207	4.207	4.207
623	WALLINGFORD REFUSE	Generator	8501	Connectic ut	ст	Connecticut	Existing	6.129	6.129	6.129	6.129	6.527	6.527	6.527	6.527	6.527	6.527	6.527	6.527
	WAA AU DUDYA			Rest-of-															
624	WMI MILLBURY 1 WEST MEDWAY	Generator	8500	NEMA-	MA	WCMASS	Existing	39.811	39.811	39.811	39.811	39.811	39.811	39.811	39.811	39.811	39.811	39.811	39.811
625	JET 1 WEST MEDWAY	Generator	8502	Boston NEMA-	MA	NEMA-Boston	Existing	42	42	42	42	42	42	45.706	45.706	45.706	45.706	42	42
626	JET 2	Generator	8502	Boston	MA	NEMA-Boston	Existing	41.821	41.821	41.821	41.821	41.821	41.821	42.366	42.366	42.366	42.366	41.821	41.821
627	JET 3	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	35.441	35.441	35.441	35.441	35.441	35.441	51.984	51.984	51.984	51.984	35.441	35.441
628	WOODLAND ROAD	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	15.808	15.808	15.808	15.808	15.808	15.808	15.808	15.808	15.808	15.808	15.808	15.808
630	WEST SPRINGFIELD 10	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
633	WEST SPRINGFIELD 3	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	94.276	94.276	94.276	94.276	94.276	94.276	94.276	94.276	94.276	94.276	94.276	94.276
636	WYMAN HYDRO 1	Generator	8503	Maine	ME	Maine	Existing	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5
637	WYMAN HYDRO 2	Generator	8503	Maine	ME	Maine	Existing	29.866	29.866	29.866	29.866	29.866	29.866	29.866	29.866	29.866	29.866	29.866	29.866
638	WYMAN HYDRO 3	Generator	8503	Maine	ME	Maine	Existing	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7	26.7
639	YARMOUTH 1	Generator	8503	Maine	ME	Maine	Existing	50.663	50.663	50.663	50.663	50.663	50.663	50.663	50.663	50.663	50.663	50.663	50.663
640	YARMOUTH 2	Generator	8503	Maine	ME	Maine	Existing	51.131	51.131	51.131	51.131	51.131	51.131	51.131	51.131	51.131	51.131	51.131	51.131
641	YARMOUTH 3	Generator	8503	Maine	ME	Maine	Existing	115.173	115.173	115.173	115.173	115.173	115.173	115.173	115.173	115.173	115.173	115.173	115.173
642	YARMOUTH 4	Generator	8503	Maine	ME	Maine	Existing	603.225	603.225	603.225	603.225	603.225	603.225	603.225	603.225	603.225	603.225	603.225	603.225
715	ROCHESTER LANDFILL	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	2.404	2.404	2.404	2.404	2.404	2.404	2.404	2.404	2.404	2.404	2.404	2.404
737	SIMPSON G LOAD REDUCER	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	2.216	2.216	2.216	2.216	3.035	3.035	3.035	3.035	3.035	3.035	3.035	3.035
739	ROCKY RIVER	Generator	8501	Connectic ut	СТ	Connecticut	Existing	29.35	29.35	29.35	29.35	29.001	29.001	29.001	29.001	29.001	29.001	29.001	29.001
754	BAR MILLS	Generator	8503	Maine	ME	Maine	Existing	1.57	1.57	1.57	1.57	2.899	2.899	2.899	2.899	2.899	2.899	2.899	2.899
755	BONNY EAGLE W. BUXTON	Generator	8503	Maine	ME	Maine	Existing	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151	16.151
757	HARRIS 4	Generator	8503	Maine	ME	Maine	Existing	1.249	1.249	1.249	1.249	1.249	1.249	1.249	1.249	1.249	1.249	1.249	1.249
759	MESSALONSKEE COMPOSITE	Generator	8503	Maine	ME	Maine	Existing	1.655	1.655	1.655	1.655	5.458	5.458	5.458	5.458	5.458	5.458	5.458	5.458
760	NORTH GORHAM	Generator			ME	Maine	Existing	1.21	1.21	1.21	1.21	1.484	1.484	1.484	1.484	1.484	1.484	1.484	1.484
761	SHAWMUT	Generator		Maine	ME	Maine	Existing	5.243	5.243	5.243	5.243	7.192	7.192	7.192	7.192	7.192	7.192	7.192	7.192
	CABOT TURNERS	,	3303	Rest-of-				5.243	5.243	5.243	5.243	132	132	132	132	132	132		7.132
766	FALLS	Generator	8500		MA	WCMASS	Existing	67.881	67.881	67.881	67.881	67.881	67.881	67.881	67.881	67.881	67.881	67.881	67.881
767	SES CONCORD	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	12.157	12.157	12.157	12.157	12.534	12.534	12.534	12.534	12.534	12.534	12.534	12.534
768	GARVINS HOOKSETT	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	4.874	4.874	4.874	4.874	8.04	8.04	8.04	8.04	8.04	8.04	8.04	8.04
769	HADLEY FALLS 1&2	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	14.555	14.555	14.555	14.555	29.742	29.742	29.742	29.742	29.742	29.742	29.742	29.742
772	NEWPORT HYDRO		8500	Rest-of-	VT	Vermont	Existing	1.314	1.314	1.314	1.314	2.236	2.236	2.236	2.236	2.236	2.236	2.236	2.236
	MIDDLEBURY			Rest-of-															
775	COMPOSITE	Generator	8500	Pool	VT	Vermont	Existing	1.217	1.217	1.217	1.217	1.217	1.217	1.217	1.217	1.217	1.217	1.217	1.217
	N. RUTLAND			Rest-of-															
776	COMPOSITE	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2
779	MIDDLESEX 2	Generator	8500		VT	Vermont	Existing	1.043	1.043	1.043	1.043	2.219	2.219	2.219	2.219	2.219	2.219	2.219	2.219
781	WEST DANVILLE 1	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0	0	0	0	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
783	HIGHGATE FALLS	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	3.415	3.415	3.415	3.415	8.793	8.793	8.793	8.793	8.793	8.793	8.793	8.793
	KEZAR LEDGEMERE																		
786	COMPOSITE	Generator	8503	Maine	ME	Maine	Existing	0.423	0.423	0.423	0.423	0.922	0.922	0.922	0.922	0.922	0.922	0.922	0.922
700	CEC 002	Concretes	0500	Rest-of-		Dhada Island	F. datie	0.265	0.265	0.265	0.265	0.545	0.646	0.646	0.646	0.545	0.646	0.646	0.546
789	PAWTUCKET U5	Generator	8500	Pool	RI	Rhode Island	Existing	0.265	0.265	0.265	0.265	0.646	0.646	0.646	0.646	0.646	0.646	0.646	0.646
792	CENTENNIAL HYDRO	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.29	0.29	0.29	0.29	0.557	0.557	0.557	0.557	0.557	0.557	0.557	0.557
793	METHUEN HYDRO	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	0.016	0.016	0.016	0.016	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188
794	MINIWAWA	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.167	0.167	0.167	0.167	0.596	0.596	0.596	0.596	0.596	0.596	0.596	0.596
	RIVER MILL			Rest-of-		New													
795	HYDRO	Generator	8500	Pool Connectic	NH	Hampshire	Existing	0	0	0	0	0.089	0.089	0.089	0.089	0.089	0.089	0.089	0.089
796	GOODWIN DAM	Generator	8501	ut	СТ	Connecticut	Existing	3	3	3	3	3	3	3	3	3	3	3	3
	CEC 003 WYRE			Connectic															
797	WYND U5	Generator	8501	ut	ст	Connecticut	Existing	0.462	0.462	0.462	0.462	1.464	1.464	1.464	1.464	1.464	1.464	1.464	1.464
798	COLEBROOK	Generator	8501	Connectic	СТ	Connecticut	Existing	0.625	0.625	0.625	0.625	0.683	0.683	0.683	0.683	0.683	0.683	0.683	0.683
800	KINNEYTOWN B	Generator	8501		СТ	Connecticut	Existing	0.348	0.348	0.348	0.348	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
801	WILLIMANTIC 1	Generator	8501	Connectic ut	СТ	Connecticut	Existing	0.06	0.06	0.06	0.06	0.218	0.218	0.218	0.218	0.218	0.218	0.218	0.218
802	WILLIMANTIC 2	Generator	8501	Connectic ut	СТ	Connecticut	Existing	0.037	0.037	0.037	0.037	0.176	0.176	0.176	0.176	0.176	0.176	0.176	0.176
803	TOUTANT	Generator	8501	Connectic ut	СТ	Connecticut	Existing	0.251	0.251	0.251	0.251	0.251	0.251	0.251	0.251	0.251	0.251	0.251	0.251
804	PUTNAM	Generator	8501	Connectic	ст	Connecticut	Existing	0.198	0.198	0.198	0.198	0.436	0.436	0.436	0.436	0.436	0.436	0.436	0.436
806	MECHANICSVILLE			Connectic	ст	Connecticut	Existing	0.037	0.037	0.037	0.037	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128
800		Generator	8301		CI	Connecticut	LXISTING	0.037	0.037	0.037	0.037	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128
807	CEC 004 DAYVILLE POND U5	Generator	8501	Connectic ut	СТ	Connecticut	Existing	0.005	0.005	0.005	0.005	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
	SANDY HOOK			Connectic															
808	HYDRO	Generator	8501	ut Connectic	СТ	Connecticut	Existing	0.007	0.007	0.007	0.007	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058
810	QUINEBAUG	Generator	8501	ut Connectic	СТ	Connecticut	Existing	0.408	0.408	0.408	0.408	1.062	1.062	1.062	1.062	1.062	1.062	1.062	1.062
811	BANTAM	Generator	8501	ut	СТ	Connecticut	Existing	0.023	0.023	0.023	0.023	0.109	0.109	0.109	0.109	0.109	0.109	0.109	0.109
812	BEEBE HOLBROOK	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.04	0.04	0.04	0.04	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103
813	TUNNEL	Generator	8501	Connectic	ст	Connecticut	Existing	0.479	0.479	0.479	0.479	1.403	1.403	1.403	1.403	1.403	1.403	1.403	1.403
814	PATCH	Generator		Rest-of- Pool	VT	Vermont	Existing	0.027	0.027	0.027	0.027	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113
815	CARVER FALLS	Generator	8500	Rest-of-	VT	Vermont	Existing	0.322	0.322	0.322	0.322	1.077	1.077	1.077	1.077	1.077	1.077	1.077	1.077
				Rest-of-															
816	CAVENDISH	Generator	8500	Rest-of-	VT	Vermont	Existing	0.323	0.323	0.323	0.323	0.951	0.951	0.951	0.951	0.951	0.951	0.951	0.951
817	TAFTSVILLE VT	Generator		Pool Rest-of-	VT	Vermont	Existing	0.072	0.072	0.072	0.072	0.103	0.103	0.103	0.103	0.103	0.103	0.103	0.103
818	PIERCE MILLS	Generator	8500	Rest-of-	VT	Vermont	Existing	0.092	0.092	0.092	0.092	0.223	0.223	0.223	0.223	0.223	0.223	0.223	0.223
819	ARNOLD FALLS	Generator	8500	Rest-of-	VT	Vermont	Existing	0.154	0.154	0.154	0.154	0.218	0.218	0.218	0.218	0.218	0.218	0.218	0.218
820	PASSUMPSIC	Generator	8500	Rest-of-	VT	Vermont	Existing	0.243	0.243	0.243	0.243	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27
821	GAGE	Generator		Pool Rest-of-	VT	Vermont	Existing	0.215	0.215	0.215	0.215	0.432	0.432	0.432	0.432	0.432	0.432	0.432	0.432
822	SMITH (CVPS)	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0.435	0.435	0.435	0.435	0.674	0.674	0.674	0.674	0.674	0.674	0.674	0.674
823	EAST BARNET	Generator	8500	Pool	VT	Vermont	Existing	0.605	0.605	0.605	0.605	1.249	1.249	1.249	1.249	1.249	1.249	1.249	1.249
824	BATH ELECTRIC HYDRO	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.237	0.237	0.237	0.237	0.221	0.221	0.221	0.221	0.221	0.221	0.221	0.221
827	SEARSBURG WIND	Generator		Rest-of- Pool	MA	WCMASS	Existing	0.229	0.229	0.229	0.229	1.075	1.075	1.075	1.075	1.075	1.075	1.075	1.075
				Rest-of-															
828	BARTON HYDRO	Generator	8500	Pool Pool	VT	Vermont	Existing	0.344	0.344	0.344	0.344	0.651	0.651	0.651	0.651	0.651	0.651	0.651	0.651
829	ENOSBURG 2 DIESEL	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.598	0.598	0.598	0.598	0.598	0.598	0.598	0.598	0.598	0.598	0.598	0.598
	ENOSBURG			Rest-of-															
830	HYDRO	Generator	8500	Pool	VT	Vermont	Existing	0.371	0.371	0.371	0.371	0.439	0.439	0.439	0.439	0.439	0.439	0.439	0.439
831	VAIL & GREAT FALLS	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.463	0.463	0.463	0.463	0.652	0.652	0.652	0.652	0.652	0.652	0.652	0.652
				Rest-of-															
832	CENTER RUTLAND	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0	0	0	0	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
833	BARNET	Generator	8500	Pool	VT	Vermont	Existing	0.05	0.05	0.05	0.05	0.166	0.166	0.166	0.166	0.166	0.166	0.166	0.166
834	COMPTU FALLS	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.159	0.159	0.159	0.159	0.415	0.415	0.415	0.415	0.415	0.415	0.415	0.415

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
835	DEWEY MILLS	Generator	8500	Name Rest-of- Pool	VT	Vermont	Existing	0.355	0.355	0.355	0.355	0.977	0.977	0.977	0.977	0.977	0.977	0.977	0.977
836	EMERSON FALLS	Generator	8500		VT	Vermont	Existing	0.019	0.019	0.019	0.019	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
837	KILLINGTON	Generator	8500		VT	Vermont	Existing	0.006	0.006	0.006	0.006	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
838	KINGSBURY	Generator	8500		VT	Vermont	Existing	0.077	0.077	0.077	0.077	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
839	LADD'S MILL	Generator	8500	Rest-of- Pool Rest-of-	VT	Vermont	Existing	0.024	0.024	0.024	0.024	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
840	MARTINSVILLE	Generator	8500		VT	Vermont	Existing	0.022	0.022	0.022	0.022	0.117	0.117	0.117	0.117	0.117	0.117	0.117	0.117
841	MORETOWN 8	Generator	8500		VT	Vermont	Existing	0.05	0.05	0.05	0.05	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
842	NANTANA MILL	Generator	8500		VT	Vermont	Existing	0.032	0.032	0.032	0.032	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096
843	NEWBURY	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0.063	0.063	0.063	0.063	0.184	0.184	0.184	0.184	0.184	0.184	0.184	0.184
844	OTTAUQUECHEE	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0.664	0.664	0.664	0.664	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32
845	SLACK DAM	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0.133	0.133	0.133	0.133	0.346	0.346	0.346	0.346	0.346	0.346	0.346	0.346
846	WINOOSKI 8	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0.278	0.278	0.278	0.278	0.519	0.519	0.519	0.519	0.519	0.519	0.519	0.519
847	WOODSIDE	Generator		Rest-of-	VT	Vermont	Existing	0.065	0.065	0.065	0.065	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086
848	WRIGHTSVILLE	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0.117	0.117	0.117	0.117	0.469	0.469	0.469	0.469	0.469	0.469	0.469	0.469
849	CRESCENT DAM	Generator		Rest-of-	MA	WCMASS	Existing	0.404	0.404	0.404	0.404	0.808	0.808	0.808	0.808	0.808	0.808	0.808	0.808
850	GLENDALE HYDRO		8500	Rest-of-	MA	WCMASS	Existing	0.405	0.405	0.405	0.405	0.664	0.664	0.664	0.664	0.664	0.664	0.664	0.664
851	GARDNER FALLS	Generator	8500		MA	WCMASS	Existing	0.149	0.149	0.149	0.149	1.274	1.274	1.274	1.274	1.274	1.274	1.274	1.274
852	SOUTH BARRE HYDRO	Generator	8500		МА	WCMASS	Existing	0.062	0.062	0.062	0.062	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
853	WEBSTER HYDRO	Generator	8500		МА	WCMASS	Existing	0	0	0	0	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051
854	ORANGE HYDRO 1	Generator	8500		МА	WCMASS	Existing	0.04	0.04	0.04	0.04	0.121	0.121	0.121	0.121	0.121	0.121	0.121	0.121
855	ORANGE HYDRO 2	Generator	8500	Rest-of- Pool Rest-of-	МА	WCMASS	Existing	0.066	0.066	0.066	0.066	0.131	0.131	0.131	0.131	0.131	0.131	0.131	0.131
856	HUNT'S POND	Generator	8500		MA	WCMASS	Existing	0.007	0.007	0.007	0.007	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029
857	OAKDALE HYDRO	Generator	8500		МА	WCMASS	Existing	2.61	2.61	2.61	2.61	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252
859	BOATLOCK	Generator	8500		МА	WCMASS New	Existing	1.515	1.515	1.515	1.515	1.997	1.997	1.997	1.997	1.997	1.997	1.997	1.997
860	BRIAR HYDRO	Generator	8500	Pool Rest-of-	NH	Hampshire New	Existing	0.903	0.903	0.903	0.903	3.513	3.513	3.513	3.513	3.513	3.513	3.513	3.513
861	CANAAN	Generator	8500		NH	Hampshire	Existing	0.469	0.469	0.469	0.469	0.982	0.982	0.982	0.982	0.982	0.982	0.982	0.982
862	CHEMICAL	Generator	8500	Pool Rest-of-	МА	WCMASS New	Existing	0.366	0.366	0.366	0.366	0.619	0.619	0.619	0.619	0.619	0.619	0.619	0.619
863	CLEMENT DAM	Generator	8500		NH	Hampshire	Existing	0.859	0.859	0.859	0.859	1.498	1.498	1.498	1.498	1.498	1.498	1.498	1.498
864	DWIGHT	Generator	8500		MA	WCMASS New	Existing	0.18	0.18	0.18	0.18	0.552	0.552	0.552	0.552	0.552	0.552	0.552	0.552
865	ERROL	Generator	8500	Pool Rest-of-	NH	Hampshire New	Existing	1.821	1.821	1.821	1.821	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18
866	GREGGS	Generator	8500	Pool	NH	Hampshire	Existing	0.429	0.429	0.429	0.429	1.407	1.407	1.407	1.407	1.407	1.407	1.407	1.407
867	INDIAN ORCHARD	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.423	0.423	0.423	0.423	1.081	1.081	1.081	1.081	1.081	1.081	1.081	1.081
	MILTON MILLS			Rest-of-		New													
868	HYDRO	Generator	8500	Pool Rest-of-	NH	Hampshire New	Existing	0.378	0.378	0.378	0.378	0.878	0.878	0.878	0.878	0.878	0.878	0.878	0.878
869	MINE FALLS	Generator	8500	Rest-of-	NH	Hampshire New	Existing	0.822	0.822	0.822	0.822	1.669	1.669	1.669	1.669	1.669	1.669	1.669	1.669
870	PEMBROKE	Generator	8500	Pool	NH	Hampshire	Existing	0.308	0.308	0.308	0.308	1.473	1.473	1.473	1.473	1.473	1.473	1.473	1.473
	PENNACOOK			Rest-of-		New													
871	FALLS LOWER	Generator	8500	Pool	NH	Hampshire	Existing	1.317	1.317	1.317	1.317	3.464	3.464	3.464	3.464	3.464	3.464	3.464	3.464
	PENNACOOK			Rest-of-	<u> </u>	New													
872	FALLS UPPER	Generator	8500	Rest-of-	NH	Hampshire	Existing	0.901	0.901	0.901	0.901	2.472	2.472	2.472	2.472	2.472	2.472	2.472	2.472
873	PUTTS BRIDGE	Generator	8500	Rest-of-	MA	WCMASS	Existing	1.23	1.23	1.23	1.23	2.227	2.227	2.227	2.227	2.227	2.227	2.227	2.227
874	RED BRIDGE	Generator	8500	Rest-of-	MA	New Hampshire	Existing	1.149	1.149	1.149	1.149	2.267	2.267	2.267	2.267	2.267	2.267	2.267	2.267
875	RIVER BEND	Generator	8500	Connectic	NH	Hampshire	Existing	0.408	0.408	0.408	0.408	0.785	0.785	0.785	0.785	0.785	0.785	0.785	0.785
876 877	ROBERTSVILLE	Generator	8501	Connectic	ст	Connecticut	Existing	0.024	0.024	0.024	0.024	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064
	SCOTLAND SKINNER	Generator	8501 8500	Rest-of-	CT	Connecticut WCMASS	Existing	0	0	0	0	1.584	1.584	1.584	1.584	1.584	1.584	1.584	1.584
878 879	TAFTVILLE CT	Generator Generator	8500	Pool Connectic ut	MA CT	Connecticut	Existing Existing	0.366	0.366	0.366	0.366	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	FRANKLIN FALLS	Generator		Rest-of-		New	Existing	0.403	0.403	0.403	0.403	0.546	0.546	0.546	0.546	0.942	0.546	0.546	0.546
882	FRANKLIN FALLS	uenerator	8500	r00I	NH	Hampshire	EXISTING	0.403	0.403	0.403	0.403	0.546	U.546	U.546	U.546	0.546	0.546	0.546	0.546

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
883	SALMON FALLS HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.953	0.953	0.953	0.953	0.824	0.824	0.824	0.824	0.824	0.824	0.824	0.824
884	SWANS FALLS	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.385	0.385	0.385	0.385	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
885	STEVENS MILL	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.08	0.08	0.08	0.08	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094
886	COCHECO FALLS	Generator	8500	Rest-of-	NH	New Hampshire	Existing	0.133	0.133	0.133	0.133	0.421	0.421	0.421	0.421	0.421	0.421	0.421	0.421
887	CHINA MILLS DAM	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.076	0.076	0.076	0.076	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44
	NEWFOUND			Rest-of-		New													
888	HYDRO SUNAPEE HYDRO	Generator	8500	Rest-of-	NH	Hampshire New	Existing	0.359	0.359	0.359	0.359	1.059	1.059	1.059	1.059	1.059	1.059	1.059	1.059
889		Generator	8500	Rest-of-	NH	New	Existing	0.069	0.069	0.069	0.069	0.319	0.319	0.319	0.319	0.319	0.319	0.319	0.319
890	NASHUA HYDRO	Generator	8500	Rest-of-	NH	New	Existing	0.43	0.43	0.43	0.43	0.781	0.781	0.781	0.781	0.781	0.781	0.781	0.781
891	HILLSBORO MILLS	Generator	8500	Rest-of-	NH	Hampshire New	Existing	0.024	0.024	0.024	0.024	0.246	0.246	0.246	0.246	0.246	0.246	0.246	0.246
892	LAKEPORT DAM	Generator	8500	Pool	NH	Hampshire	Existing	0.257	0.257	0.257	0.257	0.331	0.331	0.331	0.331	0.331	0.331	0.331	0.331
	WEST HOPKINTON			Rest-of-		New													
893	HYDRO	Generator	8500	Pool Rest-of-	NH	Hampshire New	Existing	0.203	0.203	0.203	0.203	0.395	0.395	0.395	0.395	0.395	0.395	0.395	0.395
894	LISBON HYDRO	Generator	8500	Pool	NH	Hampshire	Existing	0.231	0.231	0.231	0.231	0.319	0.319	0.319	0.319	0.319	0.319	0.319	0.319
895	LOWER ROBERTSON DAM	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.281	0.281	0.281	0.281	0.599	0.599	0.599	0.599	0.599	0.599	0.599	0.599
				Rest-of-		New													
897	OLD NASH DAM	Generator	8500		NH	Hampshire	Existing	0.026	0.026	0.026	0.026	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
909	SUGAR RIVER	Concretor	9500	Rest-of-	NILI	New	Cuistina	0	0	0	0	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116
898	HYDRO	Generator	8500		NH	Hampshire	Existing	0	0	0	0	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116
900	GREAT FALLS LOWER	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.147	0.147	0.147	0.147	0.625	0.625	0.625	0.625	0.625	0.625	0.625	0.625
901	WATERLOOM FALLS	Generator	8500	Rest-of-	NH	New Hampshire	Existing	0.008	0.008	0.008	0.008	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036
301	HOSIERY MILL	Cenerator	0300	Rest-of-		New	Existing	0.000	0.000	0.000	0.000	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
902	DAM	Generator	8500		NH	Hampshire	Existing	0.094	0.094	0.094	0.094	0.115	0.115	0.115	0.115	0.115	0.115	0.115	0.115
	WYANDOTTE			Rest-of-		New													
903	HYDRO	Generator	8500	Rest-of-	NH	Hampshire New	Existing	0.002	0.002	0.002	0.002	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072
904	LOCHMERE DAM	Generator	8500	Rest-of-	NH	Hampshire New	Existing	0.369	0.369	0.369	0.369	0.572	0.572	0.572	0.572	0.572	0.572	0.572	0.572
905	ASHUELOT HYDRO	Generator	8500		NH	Hampshire	Existing	0.289	0.289	0.289	0.289	0.573	0.573	0.573	0.573	0.573	0.573	0.573	0.573
906	ROLLINSFORD HYDRO	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.289	0.289	0.289	0.289	0.913	0.913	0.913	0.913	0.913	0.913	0.913	0.913
908	OTIS MILL HYDRO	Generator	8500	Rest-of-	NH	New Hampshire	Existing	0	0	0	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
508	STEELS POND	Generator	8300	Rest-of-	INII	New	LXISTING	0	0	0	0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
909	HYDRO	Generator	8500	Pool	NH	Hampshire	Existing	0.057	0.057	0.057	0.057	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
910	CAMPTON DAM	Generator	8500		NH	New Hampshire	Existing	0.114	0.114	0.114	0.114	0.193	0.193	0.193	0.193	0.193	0.193	0.193	0.193
911	KELLEYS FALLS	Generator	8500		NH	New Hampshire	Existing	0.001	0.001	0.001	0.001	0.236	0.236	0.236	0.236	0.236	0.236	0.236	0.236
913	GOODRICH FALLS	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.191	0.191	0.191	0.191	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299
	CHAMBERLAIN			Rest-of-		New													
914	FALLS	Generator	8500	Pool	NH	Hampshire	Existing	0	0	0	0	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
919	HOPKINTON HYDRO	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.074	0.074	0.074	0.074	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164
922	NOONE FALLS	Generator	8500	Rest-of-	NH	New Hampshire	Existing	0.03	0.03	0.03	0.03	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076
	OTTER LANE			Rest-of-		New													
925	HYDRO	Generator	8500		NH	Hampshire	Existing	0.008	0.008	0.008	0.008	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029
	PETERBOROUGH			Rest-of-		New													
926	LOWER HYDRO	Generator	8500	Pool	NH	Hampshire	Existing	0	0	0	0	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	SALMON BROOK			Rest-of-		New													
928	STATION 3	Generator	8500		NH	Hampshire New	Existing	0.024	0.024	0.024	0.024	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
931	AVERY DAM	Generator	8500	Pool	NH	Hampshire	Existing	0.173	0.173	0.173	0.173	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
932	WATSON DAM	Generator	8500		NH	New Hampshire	Existing	0.028	0.028	0.028	0.028	0.161	0.161	0.161	0.161	0.161	0.161	0.161	0.161
933	WESTON DAM	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.243	0.243	0.243	0.243	0.354	0.354	0.354	0.354	0.354	0.354	0.354	0.354
935	SUNNYBROOK HYDRO 2	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.016	0.016	0.016	0.016	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
,,,,	1	Sencialui	0000	. 551	PALL	. iu.i.paim C	FVIORITE	0.010	0.010	0.010	0.010	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
	PETERBOROUGH			Rest-of-		New													
941	UPPER HYDRO	Generator	8500		NH	Hampshire	Existing	0	0	0	0	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
942	DUNBARTON ROAD LANDFILL	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.266	0.266	0.266	0.266	0.288	0.288	0.288	0.288	0.288	0.288	0.288	0.288
943	FOUR HILLS LANDFILL	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.21	0.21	0.21	0.21	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082
	PEPPERELL HYDRO COMPANY			Rest-of-															
948	LLC VALLEY HYDRO -	Generator	8500	Pool Rest-of-	MA	WCMASS	Existing	0.507	0.507	0.507	0.507	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
949	QF	Generator	8500	Pool	RI	Rhode Island	Existing	0.051	0.051	0.051	0.051	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168
950	LP ATHOL - QF	Generator	8500		MA	WCMASS	Existing	0.098	0.098	0.098	0.098	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067
951	BALTIC MILLS - QF	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.038	0.038	0.038	0.038	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063
953	ATTLEBORO LANDFILL - QF	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	0.179	0.179	0.179	0.179	0.264	0.264	0.264	0.264	0.264	0.264	0.264	0.264
	MM LOWELL			Rest-of-															
954	LANDFILL - QF	Generator	8500	Pool	MA	WCMASS	Existing	0.108	0.108	0.108	0.108	0.106	0.106	0.106	0.106	0.106	0.106	0.106	0.106
957	HG&E HYDRO CABOT 1-4	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.947	0.947	0.947	0.947	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
	BARTON 1-4 DIESELS	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605	0.605
969	POWDER MILL HYDRO	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.01	0.01	0.01	0.01	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092
970	DUDLEY HYDRO	Generator	8500	Rest-of- Pool Connectic	MA	WCMASS	Existing	0.036	0.036	0.036	0.036	0.112	0.112	0.112	0.112	0.112	0.112	0.112	0.112
978	NEW MILFORD	Generator	8501	ut	СТ	Connecticut	Existing	1.631	1.631	1.631	1.631	1.336	1.336	1.336	1.336	1.336	1.336	1.336	1.336
	BG DIGHTON		0.00	Rest-of-				460.0		450.0			450.0			1500			
1005	POWER LLC	Generator	8500	Pool	MA	SEMASS	Existing	160.3	160.3	160.3	160.3	160.3	160.3	160.3	160.3	160.3	160.3	160.3	160.3
1028	BUNKER RD #12 GAS TURB	Generator	8500	Rest-of- Pool	МА	SEMASS	Existing	2.351	2.351	2.351	2.351	2.351	2.351	2.351	2.351	2.351	2.351	2.351	2.351
1029	BUNKER RD #13 GAS TURB	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
1030	OAK BLUFFS	Generator	8500	Rest-of-	МА	SEMASS	Existing	8.12	8.12	8.12	8.12	8.12	8.12	8.12	8.12	8.12	8.12	8.12	8.12
1031	WEST TISBURY	Generator	8500		МА	SEMASS	Existing	5.568	5.568	5.568	5.568	5.568	5.568	5.568	5.568	5.568	5.568	5.568	5.568
1032	BRIDGEPORT ENERGY 1	Generator	8501		ст	Connecticut	Existing	454.434	454.434	454.434	454.434	454.434	454.434	454.434	454.434	454.434	454.434	454.434	454.434
1034	RIVERSIDE 4-7	Generator	8500	Rest-of- Pool Rest-of-	MA	WCMASS	Existing	1.287	1.287	1.287	1.287	1.844	1.844	1.844	1.844	1.844	1.844	1.844	1.844
	RIVERSIDE 8	Generator	8500	Rest-of-	MA	WCMASS	Existing	2.64	2.64	2.64	2.64	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37
	FAIRFAX	Generator		Pool Rest-of-	VT	Vermont	Existing	1.504	1.504	1.504	1.504	3.932	3.932	3.932	3.932	3.932	3.932	3.932	3.932
	COLLINS HYDRO	Generator	8500	Pool Rest-of- Pool	MA	WCMASS	Existing	0.241	0.241	0.241	0.241	0.696	0.696	0.696	0.696	0.696	0.696	0.696	0.696
1049	CHICOPEE HYDRO	Generator Generator	8500 8500	Rest-of-	MA MA	WCMASS	Existing Existing	0.456	0.456	0.456	0.456	1.383	1.383	1.383	1.383	1.383	1.383	1.383	1.383
	BLACKSTONE		_	Rest-of-									_	_	_		_	_	_
	HYDRO ASSOC	Generator	8500	Pool	RI	Rhode Island	Existing	0	0	0	0	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185
	BLACKSTONE HYDRO LOAD REDUCER	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	0.307	0.307	0.307	0.307	0.578	0.578	0.578	0.578	0.578	0.578	0.578	0.578
1059	BARRE LANDFILL	Generator	8500	Rest-of-	MA	WCMASS	Existing	0.657	0.657	0.657	0.657	0.659	0.659	0.659	0.659	0.659	0.659	0.659	0.659
	MASCOMA HYDRO	Generator	8500	Rest-of-	NH	New Hampshire	Existing	0.237	0.237	0.237	0.237	0.834	0.834	0.834	0.834	0.834	0.834	0.834	0.834
1062	MWRA COSGROVE	Generator		Rest-of-	MA	WCMASS	Existing	0.871	0.871	0.871	0.871	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36

BERKSHIRE DIAM DI	229.279 229.279 0.023 0.023 2.011 2.011 2.809 2.809 0.16 0.16 0.494 0.494 0.225 0.225 0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686 100 100	0.229.279 0.023 2.011 2.809 0.16 0.494 0.225 0.327 0.568 0.389 1.686
1107 SOMERSET Generator 8503 Maine ME Maine Existing 0 0 0 0 0 0.023 0.023 0.023 0.023 0.023 109	0.023 0.023 2.011 2.011 2.809 2.809 0.16 0.16 0.494 0.494 0.225 0.225 0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686	0.023 2.011 2.809 0.16 0.494 0.225 0.327 0.568
1109 MMWAC Generator 8503 Maine ME Maine Existing 1.744 1.744 1.744 1.744 2.011 2.011 2.011 2.011 2.011 2.011 1.	2.011 2.011 2.809 2.809 0.16 0.16 0.494 0.494 0.225 0.225 0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686 100 100	2.011 2.809 0.16 0.494 0.225 0.327 0.568 0.389
1113 BRASSUA HYDRO Generator 8503 Maine ME Maine Existing 2.123 2.123 2.123 2.123 2.123 2.809 2.	0.16 0.16 0.494 0.494 0.225 0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686 100 100	2.809 0.16 0.494 0.225 0.327 0.568 0.389 1.686
GREAT WORKS COMPOSITE Generator S503 Maine ME Maine Existing 0.028 0.029 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.0389	0.16 0.16 0.494 0.494 0.225 0.225 0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686	0.16 0.494 0.225 0.327 0.568 0.389 1.686
1117 COMPOSITE Generator 8503 Maine ME Maine Existing 0.028 0.028 0.028 0.028 0.028 0.16 0.	0.494 0.494 0.225 0.225 0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686	0.494 0.225 0.327 0.568 0.389
1119 HYDRO Generator 8503 Maine ME Maine Existing 0.25 0.25 0.25 0.25 0.494	0.225 0.225 0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686	0.225 0.327 0.568 0.389
1122 DIAMOND-QF Generator 8500 Pool MA WCMASS Existing 0.137 0.137 0.137 0.137 0.225	0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686	0.327 0.568 0.389 1.686
Rest-of-	0.327 0.327 0.568 0.568 0.389 0.389 1.686 1.686	0.327 0.568 0.389 1.686
MORRISVILLE 1166 PLANT #2 Generator 8500 Pool VT Vermont Existing 0.327 0.327 0.327 0.327 0.568 0.568 0.568 0.568 0.568 0.568 WOLCOTT HYDRO 1167 #1 Generator 8500 Pool VT Vermont Existing 0.134 0.134 0.134 0.34 0.389 0.389 0.389 0.389 0.389 Rest-of- Res	0.568	0.568 0.389 1.686
1166 PLANT #2 Generator 8500 Pool VT Vermont Existing 0.327 0.327 0.327 0.327 0.568	0.389 0.389 1.686 1.686 100 100	0.389
WOLCOTT HYDRO Rest-of- WT Vermont Existing 0.134 0.134 0.134 0.134 0.389	0.389 0.389 1.686 1.686 100 100	0.389
1167 #1 Generator 8500 Pool VT Vermont Existing 0.134 0.134 0.134 0.34 0.389 0.389 0.389 0.389 0.389 0.389 1.168 H.K. SANDERS Generator 8500 Pool VT Vermont Existing 1.686 1.	1.686 1.686 100 100	1.686
1168 H.K. SANDERS Generator 8500 Pool VT Vermont Existing 1.686 1.686 1.686 1.686 1.686 1.686 1.686 1.686 1.686 1.686	100 100	
	100 100	
		400
STONY BROOK Rest-of- 1185 GT1A Generator 8500 Pool MA WCMASS Existing 100	97 07	100
STONY BROOK Rest-of-	97 97	
1186 GT1B Generator 8500 Pool MA WCMASS Existing 97 97 97 97 97 97 97 97 97 97 97 97	51 97	97
STONY BROOK Rest-of-		
1187 GT1C Generator 8500 Pool MA WCMASS Existing 100 100 100 100 100 100 100 100 100 10	100 100	100
CRRA HARTFORD Connectic		
1209 LANDFILL Generator 8501 ut CT Connecticut Existing 1.707 1.707 1.707 1.707 1.725 1.725 1.725 1.725 1.725	1.725 1.725	1.725
Rest-of-	325.786 325.786	325.786
MAINE		
INDEPENDENCE		
1216 STATION Generator 8503 Maine ME Maine Existing 488.276 488.276 488.276 488.276 488.276 488.276 488.276 488.276 488.276 488.276 488.276 488.276	488.276 488.276	488.276
1221 ESSEX DIESELS Generator 8500 Pool VT Vermont Existing 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215 7.215	7.215 7.215	7.215
1225 TANNERY DAM Generator 8500 Pool MA WCMASS Existing 0 0 0 0.006 0.006 0.006 0.006 0.006	0.006 0.006	0.006
Rest-of-		
1226 TIVERTON POWER Generator 8500 Pool RI Rhode Island Existing 244.086 244.086 244.086 244.086 244.086 244.086 244.086 244.086 244.086 244.086 244.086 244.086	244.086 244.086	244.086
RUMFORD 1255 POWER Generator	244.94 244.94	244.94
The second control of the second seco	24434	2,41,34
BHE SMALL		
HYDRO	1.926 1.926	1.926
1267 SPARHAWK Generator 8503 Maine ME Maine Existing 0.001 0.001 0.001 0.001 0.0043 0.043 0.043 0.043 0.043	0.043 0.043	0.043
SYSKO STONY	0.016 0.016	0.016
SYSKO WIGHT		
1271 BROOK Generator 8503 Maine ME Maine Existing 0.003 0.003 0.003 0.003 0.024 0.024 0.024 0.024 0.024	0.024 0.024	0.024
KENNEBEC		
1273 WATER US Generator 8503 Maine ME Maine Existing 0.099 0.099 0.099 0.099 0.53 0.53 0.53 0.53 0.53	0.53 0.53	0.53
1283 LEWISTON U5 Generator 8503 Maine ME Maine Existing 0.304 0.304 0.304 0.305 0.305 0.305 0.305 0.305	0.305 0.305	0.305
ANP-BLACKSTONE Rest-of-		
1286 ENERGY CO. #1 Generator 8500 Pool MA SEMASS Existing 237.356 237.356 237.356 237.356 237.356 237.356 237.356 237.356 237.356	237.356 237.356	237.356
ANP-BLACKSTONE Rest-of-		
1287 ENERGY 2 Generator 8500 Pool MA SEMASS Existing 241.154 241.154 241.154 241.154 241.154 241.154 241.154 241.154 241.154 241.154	241.154 241.154	241.154
BUCKSPORT 1288 ENERGY 4 Generator 8503 Maine ME Maine Existing 144 1	144 144	144
1342 LAKE ROAD 1 Generator 8501 ut CT Connecticut Existing 245.792 245.792 245.792 245.792 245.792 245.792 245.792 245.792 245.792	245.792 245.792	245.792
Connectic		
1343 LAKE ROAD 2 Generator 8501 ut CT Connecticut Existing 251.213 251.213 251.213 251.213 251.213 251.213 251.213 251.213 251.213 251.213 251.213 251.213 251.213	251.213 251.213	251.213
1344 LAKE ROAD 3 Generator 8501 ut CT Connecticut Existing 254.717 254.717 254.717 254.717 254.717 254.717 254.717 254.717 254.717	254.717 254.717	254.717
1345 WESTBROOK Generator 8503 Maine ME Maine Existing 524.744 524.744 524.744 524.744 524.744 524.744 524.744 524.744 524.744	524.744 524.744	524.744

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
			Zone ib	Name															
1368	ROCKY GORGE CORPORATION	Generator	8503	Maine	ME	Maine	Existing	0.148	0.148	0.148	0.148	0.296	0.296	0.296	0.296	0.296	0.296	0.296	0.296
	PPL WALLINGFORD			Connectic															
1376	PPL	Generator	8501	ut	СТ	Connecticut	Existing	45	45	45	45	45	45	45	45	45	45	45	45
1377	WALLINGFORD UNIT 2	Generator	8501	Connectic ut	СТ	Connecticut	Existing	45	45	45	45	45	45	45	45	45	45	45	45
	PPL WALLINGFORD			Connectic															
1378	UNIT 3 PPL	Generator	8501	ut	СТ	Connecticut	Existing	45	45	45	45	45	45	45	45	45	45	45	45
1379	WALLINGFORD UNIT 4	Generator	8501	Connectic ut	ст	Connecticut	Existing	45	45	45	45	45	45	45	45	45	45	45	45
	PPL WALLINGFORD			Connectic															
1380	UNIT 5	Generator	8501	ut	СТ	Connecticut	Existing	45	45	45	45	45	45	45	45	45	45	45	45
1385	Milford Power 1 Incremental MILFORD POWER	Generator	8501	Connectic ut Connectic	ст	Connecticut	Existing	253.61	253.61	253.61	253.61	253.61	253.61	253.61	253.61	253.61	253.61	253.61	253.61
1386	2	Generator	8501	ut	ст	Connecticut	Existing	253.093	253.093	253.093	253.093	253.093	253.093	253.093	253.093	253.093	253.093	253.093	253.093
1412	ANP- BELLINGHAM 1	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	241.367	241.367	241.367	241.367	264.004	264.004	264.004	264.004	264.004	264.004	264.004	264.004
1415	ANP- BELLINGHAM 2	Generator	8500	Rest-of- Pool Rest-of-	MA	SEMASS	Existing	243.587	243.587	243.587	243.587	243.587	243.587	243.587	243.587	243.587	243.587	243.587	243.587
1432	GRS-FALL RIVER	Generator	8500		MA	SEMASS	Existing	3.113	3.113	3.113	3.113	3.113	3.113	3.113	3.113	3.113	3.113	3.113	3.113
1478	MYSTIC 8	Generator	8502	Boston	MA	NEMA-Boston	Existing	691.31	691.31	691.31	691.31	691.31	691.31	691.31	691.31	691.31	691.31	691.31	691.31
1495	SOUTHBRIDGE P&T QF U5	Generator	8500	Rest-of- Pool	МА	WCMASS	Existing	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188
	GRANBY																		
1572	SANITARY LANDFILL QF U5	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
1616	MYSTIC 9	Generator	8502	NEMA- Boston	МА	NEMA-Boston	Existing	703.324	703.324	703.324	703.324	703.324	703.324	703.324	703.324	703.324	703.324	703.324	703.324
1625	GRANITE RIDGE ENERGY	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	661.322	661.322	661.322	661.322	661.322	661.322	661.322	661.322	661.322	661.322	661.322	661.322
1630	RISEP	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	543.455	543.455	543.455	543.455	543.455	543.455	543.455	543.455	543.455	543.455	543.455	543.455
	Indeck-Energy			Rest-of-		New													
1631	Alexandria, LLC	Generator	8500		NH	Hampshire	Existing	13.882	13.882	13.882	13.882	13.882	13.882	13.882	13.882	13.882	13.882	13.882	13.882
	NAEA Newington			Rest-of-		New													
1649	Energy, LLC	Generator	8500	Pool	NH	Hampshire	Existing	522.014	522.014	522.014	522.014	522.014	522.014	522.014	522.014	522.014	522.014	522.014	522.014
1656	HULL WIND TURBINE U5	Generator	8500	Rest-of- Pool NEMA-	MA	SEMASS	Existing	0.049	0.049	0.049	0.049	0.152	0.152	0.152	0.152	0.152	0.152	0.152	0.152
1672	KENDALL CT	Generator	8502		МА	NEMA-Boston	Existing	153.533	153.533	153.533	153.533	153.533	153.533	153.533	153.533	153.533	153.533	153.533	153.533
1691	FORE RIVER-1 WEST	Generator	8500	Pool Rest-of-	MA	SEMASS	Existing	688.298	688.298	688.298	688.298	688.298	688.298	688.298	688.298	688.298	688.298	688.298	688.298
1693	SPRINGFIELD GT-1	Generator	8500	Pool	МА	WCMASS	Existing	36.908	36.908	36.908	36.908	36.908	36.908	36.908	36.908	36.908	36.908	36.908	36.908
1694	WEST SPRINGFIELD GT-2	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	37.441	37.441	37.441	37.441	37.441	37.441	37.441	37.441	37.441	37.441	37.441	37.441
1720	MIDDLEBURY LOWER	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.808	0.808	0.808	0.808	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28
2278	BARKER LOWER HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.325	0.325	0.325	0.325	0.841	0.841	0.841	0.841	0.841	0.841	0.841	0.841
2279	BARKER UPPER HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.377	0.377	0.377	0.377	0.929	0.929	0.929	0.929	0.929	0.929	0.929	0.929
2280	BENTON FALLS HYDRO	Generator		Maine	ME	Maine	Existing	0.905	0.905	0.905	0.905	2.541	2.541	2.541	2.541	2.541	2.541	2.541	2.541
	BROWNS MILL																		
2281	DAMARISCOTTA	Generator	8503	Maine	ME	Maine	Existing	0.264	0.264	0.264	0.264	0.593	0.593	0.593	0.593	0.593	0.593	0.593	0.593
2282	HYDRO	Generator		Maine	ME	Maine	Existing	0 000	0 000	0	0 000	0.284	0.284	0.284	0.284	0.284	0.284	0.284	0.284
2283	EUSTIS HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.083	0.083	0.083	0.083	0.156	0.156	0.156	0.156	0.156	0.156	0.156	0.156

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
2284	GARDINER HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.193	0.193	0.193	0.193	1	1	1	1	1	1	1	1
2285	GREENVILLE HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.182	0.182	0.182	0.182	0.374	0.374	0.374	0.374	0.374	0.374	0.374	0.374
2286	HACKETT MILLS HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.152	0.152	0.152	0.152	0.418	0.418	0.418	0.418	0.418	0.418	0.418	0.418
2287	MECHANIC FALLS HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.227	0.227	0.227	0.227	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555
2288	NORWAY HYDRO	Generator	8503	Maine	ME	Maine	Existing	0	0	0	0	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037
2289	PIONEER DAM HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.057	0.057	0.057	0.057	0.078	0.078	0.078	0.078	0.078	0.078	0.078	0.078
2290	PITTSFIELD HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.209	0.209	0.209	0.209	0.637	0.637	0.637	0.637	0.637	0.637	0.637	0.637
	WAVERLY																		
2291	AVENUE HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.142	0.142	0.142	0.142	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.252
2292	YORK HYDRO	Generator	8503	Maine	ME	Maine	Existing	0.318	0.318	0.318	0.318	0.832	0.832	0.832	0.832	0.832	0.832	0.832	0.832
2424	CITIZENS BLOCK LOAD	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	30	30	30	30	30	30	30	30	30	30	30	30
	SPRINGFIELD			Rest-of-															
2425	REFUSE-NEW	Generator	8500	Pool	MA	WCMASS	Existing	5.132	5.132	5.132	5.132	5.827	5.827	5.827	5.827	5.827	5.827	5.827	5.827
2426	Hydro Kennebec	Generator	8503	Maine	ME	Maine	Existing	7.626	7.626	7.626	7.626	10.855	10.855	10.855	10.855	10.855	10.855	10.855	10.855
2430	BELDENS-NEW	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	1.41	1.41	1.41	1.41	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18
2431	DODGE FALLS- NEW	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	3.272	3.272	3.272	3.272	4.422	4.422	4.422	4.422	4.422	4.422	4.422	4.422
2432	HUNTINGTON FALLS-NEW	Generator	8500	Rest-of- Pool Rest-of-	VT	Vermont	Existing	1.634	1.634	1.634	1.634	3.113	3.113	3.113	3.113	3.113	3.113	3.113	3.113
2433	RYEGATE 1-NEW	Generator	8500		VT	Vermont	Existing	20.468	20.468	20.468	20.468	19.396	19.396	19.396	19.396	19.396	19.396	19.396	19.396
2434	GORGE 18 HYDRO- NEW	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.246	0.246	0.246	0.246	1.525	1.525	1.525	1.525	1.525	1.525	1.525	1.525
2435	VERGENNES HYDRO-NEW	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.845	0.845	0.845	0.845	1.317	1.317	1.317	1.317	1.317	1.317	1.317	1.317
	BROCKWAY MILLS			Rest-of-															
2439	PLAINVILLE GEN	Generator	8500	Pool Rest-of-	VT	Vermont	Existing	0.016	0.016	0.016	0.016	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217
2462	QF U5	Generator	8500	Rest-of-	MA	SEMASS	Existing	2.964	2.964	2.964	2.964	3.217	3.217	3.217	3.217	3.217	3.217	3.217	3.217
2466	CHERRY 7 CHERRY 8	Generator	8500	Rest-of-	MA	WCMASS	Existing	2.8	2.8	3.4	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
2467	CHERRY 10	Generator Generator	8500 8500	Rest-of-	MA MA	WCMASS	Existing Existing	2.1	2.1	2.1	2.1	3.4 2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
2469	CHERRY 11	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
2470	CHERRY 12	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	4.999	4.999	4.999	4.999	4.999	4.999	4.999	4.999	4.999	4.999	4.999	4.999
9100	CL&P Connecticut Portfolio	Demand	8501	Connectic ut	ст	Connecticut	Existing	11.046	11.046	11.046	11.046	11.046	11.046	11.046	11.046	11.046	11.046	11.046	11.046
9102	CLM Residential Energy Effic	Demand	8501	Connectic ut	ст	Connecticut	Existing	0	0	0	0	0	0	0	0	0	0	0	0
9103	CLM C&I Energy Efficiency	Demand	8501	Connectic ut	СТ	Connecticut	Existing	3.639	3.639	3.639	3.639	3.639	3.639	3.639	3.639	3.639	3.639	3.639	3.639
9104	EI C&I Energy Efficiency	Demand	8501	Connectic ut	ст	Connecticut	Existing	1.406	1.406	1.406	1.406	1.406	1.406	1.406	1.406	1.406	1.406	1.406	1.406
	PSNH CORE EE			Rest-of-		New													
9105	Pgm Portfolio I	Demand	8500		NH	Hampshire	Existing	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92
9108	Residential Energy Efficienc	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	0.043	0.043	0.043	0.043	0.043	0.043	0.012	0.012	0.012	0.012	0.043	0.043

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
				Name															
9109	Commercial Energy Efficiency	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
9114	ngrid nh odr eeproject_1	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707	0.707
9115	CL&P Dist Gen 2007	Demand	8501	Connectic ut	ст	Connecticut	Existing	0.293	0.293	0.293	0.293	0.293	0.293	0.293	0.293	0.293	0.293	0.293	0.293
9116	ngrid ri odr eeproject_1	Demand	8500	Rest-of- Pool	RI	Rhode Island	Existing	7.032	7.032	7.032	7.032	7.032	7.032	7.032	7.032	7.032	7.032	7.032	7.032
9118	Unitil EE Project - 2007	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066
	ngrid sema odr			Rest-of-															
9120	eeproject_1	Demand	8500	Pool	MA	SEMASS	Existing	5.275	5.275	5.275	5.275	5.275	5.275	5.275	5.275	5.275	5.275	5.275	5.275
9121	ngrid wcma odr eeproject_1	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	5.442	5.442	5.442	5.442	5.442	5.442	5.442	5.442	5.442	5.442	5.442	5.442
	ngrid nema odr			NEMA-															
9122 9123	eeproject_1 NSTAR SEMA	Demand Demand	8502 8500	Rest-of- Pool	MA MA	NEMA-Boston SEMASS	Existing Existing	3.862	3.862	3.862	3.862	3.862	3.862	3.862	3.862	3.862	3.862	3.862	3.862
9125	UES EE Project 2007	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.622	0.622	0.622	0.622	0.622	0.622	0.622	0.622	0.622	0.622	0.622	0.622
9126	NSTAR NEMA 07	Demand	8502	NEMA- Boston	MA	NEMA-Boston	Existing	4.304	4.304	4.304	4.304	4.304	4.304	4.304	4.304	4.304	4.304	4.304	4.304
9127	CL&P CT Portfolio - 2007	Demand	8501	Connectic ut	ст	Connecticut	Existing	0	0	0	0	0	0	0	0	0	0	0	0
9128	NHEC CORE EE Pgm Portfolio 1	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159
0430	UMass Amherst - 4 MW Steam Turbine	Demand	8500	Rest-of-		WCMASS	Foliation -	4.63	1.62	1.63	4.63	1.62	4.63	1.63	4.63	1.63	1.62	4.62	1.62
9129		Demand	8500		MA	WCIVIASS	Existing	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62
9131	WMECO MA Portfolio 2006	Demand	8500		MA	WCMASS	Existing	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045
10091	MWRA Deer Island	Demand		Rest-of-	MA	NEMA-Boston	Existing	15.66	15.66	15.66	15.66	15.66	15.66	15.66	15.66	15.66	15.66	15.66	15.66
10106	Citizens Group A NECCO	Demand	8500		VT	Vermont	Existing	5.94	5.94	5.94	5.94	5.94	5.94	5.94	5.94	5.94	5.94	5.94	5.94
10308	COGENERATION FACILITY	Generator	8502	NEMA- Boston	МА	NEMA-Boston	Existing	4.871	4.871	4.871	4.871	4.871	4.871	4.871	4.871	4.871	4.871	4.871	4.871
10361	BOC Kittery Load	Demand		Maine Rest-of-	ME	Maine New	Existing	9.396	9.396	9.396	9.396	9.396	9.396	9.396	9.396	9.396	9.396	9.396	9.396
10401	CELLEY MILL U5	Generator	8500	Pool	NH	Hampshire	Existing	0	0	0	0	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
10402	PETTYBORO HYDRO U5	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.002	0.002	0.002	0.002	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
10403	EASTMAN BROOK U5	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.005	0.005	0.005	0.005	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052
10404	WHEELABRATOR CLAREMONT U5	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	3.65	3.65	3.65	3.65	3.527	3.527	3.527	3.527	3.527	3.527	3.527	3.527
10406	LOWER VALLEY HYDRO U5	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.149	0.149	0.149	0.149	0.453	0.453	0.453	0.453	0.453	0.453	0.453	0.453
10407	WOODSVILLE HYDRO U5	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.121	0.121	0.121	0.121	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151
	LOWER VILLAGE			Rest-of-		New													
10408	HYDRO U5 SWEETWATER	Generator	8500	Pool Rest-of-	NH	Hampshire New	Existing	0	0	0	0	0.401	0.401	0.401	0.401	0.401	0.401	0.401	0.401
10409	HYDRO U5	Generator	8500		NH	Hampshire	Existing	0.134	0.134	0.134	0.134	0.405	0.405	0.405	0.405	0.405	0.405	0.405	0.405

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
	Great Lakes -			- rediiic															
10424	Berlin Incremental	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	9.171	9.171	9.171	9.171	12.662	12.662	12.662	12.662	12.662	12.662	12.662	12.662
10451	WESTFIELD #1 U5	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.046	0.046	0.046	0.046	0	0	0	0	0	0	0	0
10615	BLUE SPRUCE FARM U5	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.207	0.207	0.207	0.207	0.195	0.195	0.195	0.195	0.195	0.195	0.195	0.195
10013	TAKW 05	Generator	8300	1 001	VI	vermone	LAISTING	0.207	0.207	0.207	0.207	0.193	0.193	0.193	0.193	0.193	0.193	0.193	0.193
	WEST SPRINGFIELD			Rest-of-															
10770	HYDRO U5	Generator	8500	Pool	MA	WCMASS	Existing	0.341	0.341	0.341	0.341	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884
10801	COVENTRY CLEAN ENERGY	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	3.38	3.38	3.38	3.38	3.46	3.46	3.46	3.46	3.46	3.46	3.46	3.46
10959	RRIG EXPANSION PHASE 2	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	5.244	5.244	5.244	5.244	4.831	4.831	4.831	4.831	4.831	4.831	4.831	4.831
	GRTR NEW BEDFORD LFG			Rest-of-															
11052	UTIL PROJ	Generator	8500	Pool	MA	SEMASS	Existing	2.605	2.605	2.605	2.605	2.672	2.672	2.672	2.672	2.672	2.672	2.672	2.672
11126	NORTH HARTLAND HYDRO	Generator	0500	Rest-of-	VT	Vermont	Evictic -	3.09	3.09	3.09	3.09	4.074	4.074	4.074	4.074	4.074	4.074	4.074	4.074
11126	Worcester Water	Generator	8500	Rest-of-	VI	vermont	Existing	3.09	3.09	3.09	3.09	4.074	4.074	4.074	4.074	4.074	4.074	4.074	4.074
11273	Filtration	Demand	8500	Pool	МА	WCMASS	Existing	0.864	0.864	0.864	0.864	0.864	0.864	0.864	0.864	0.864	0.864	0.864	0.864
	HULL WIND	_		Rest-of-															
11408	TURBINE II RUMFORD FALLS	Generator		Pool	MA ME	SEMASS Maine	Existing Existing	0.073 29.083	29.083	29.083	29.083	0.316 35.329							
11424	WATERSIDE	Generator	8303	Connectic	IVIL	ivianie	LXISTING	25.063	29.063	25.063	29.063	33.323	33.323	33.323	33.329	33.329	33.323	33.323	33.323
11842	POWER	Generator	8501		ст	Connecticut	Existing	71.218	71.218	71.218	71.218	71.218	71.218	71.218	71.218	71.218	71.218	71.218	71.218
	BROCKTON			Rest-of-															
11925	BRIGHTFIELDS FIEC DIESEL	Generator Generator		Pool Maine	MA ME	SEMASS Maine	Existing Existing	0.141	0.141	0.141	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64
12100	BERKSHIRE COW	Generator	8303	Rest-of-	IVIE	Walle	LXISTING	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
12180	POWER	Generator	8500	Pool	VT	Vermont	Existing	0.287	0.287	0.287	0.287	0.366	0.366	0.366	0.366	0.366	0.366	0.366	0.366
12274	GREEN MOUNTAIN DAIRY	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	0.185	0.185	0.185	0.185	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
12323	COVENTRY CLEAN ENERGY #4	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	2.235	2.235	2.235	2.235	2.307	2.307	2.307	2.307	2.307	2.307	2.307	2.307
12450	NYPA - CMR	Import	8500	Rest-of- Pool			Existing	68.8	68.8	68.8	68.8	68.8	68.8	68.8	68.8	68.8	68.8	68.8	68.8
12451	NYPA - VT	Import	8500	Rest-of- Pool Rest-of-			Existing	14	14	14	14	14	14	14	14	14	14	14	14
12452	VJO - Highgate	Import	8500	Pool			Existing	0	0	0	0	0	0	0	0	0	0	0	0
12500	Thomas A. Watson	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	105.2	105.2	105.2	105.2	105.2	105.2	105.2	105.2	105.2	105.2	105.2	105.2
12504	Devon 15-18	Generator	8501		ст	Connecticut	Existing	187.552	187.552	187.552	187.552	187.552	187.552	187.552	187.552	187.552	187.552	187.552	187.552
12505	Middletown 12-15	Generator	8501	Connectic	ст	Connecticut	Existing	187.6	187.6	187.6	187.6	187.6	187.6	187.6	187.6	187.6	187.6	187.6	187.6
12509	UNH Power Plant	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	2	2	2	2	2	2	2	2	2	2	2	2
12510	Swanton Gas Turbine 1	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	19.44	19.44	19.44	19.44	19.44	19.44	19.44	19.44	19.44	19.44	19.44	19.44
	Swanton Gas			Rest-of-															
12511	Turbine 2	Generator	8500	Pool	VT	Vermont	Existing	19.723	19.723	19.723	19.723	19.723	19.723	19.723	19.723	19.723	19.723	19.723	19.723
	Lowell Power			Rest-of-															
12521	Reactivation	Generator	8500	Connectic	MA	WCMASS	Existing	74	74	74	74	74	74	74	74	74	74	74	74
12524 12526	Cos Cob 13&14 Pierce	Generator Generator	8501 8501	Connectic	ст	Connecticut	Existing Existing	76.515	76.515	76.515	76.515	76.515	76.515	76.515	76.515	76.515	76.515	76.515	76.515
12520	Sheffield Wind	Senerator	0501	Rest-of-	-	25meeticut	-AIJCHIE	, 5.515	, 3.313	, 3.313	, 3.313	, 3.313	, 5.515	, 5.515	, 0.515	, 5.515	, 3.313	, 5.515	, 3.313
12530	Farm	Generator	8500	Pool	VT	Vermont	Existing	3.29	3.29	3.29	3.29	8.241	8.241	8.241	8.241	8.241	8.241	8.241	8.241

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
12551	Kibby Wind Power	Generator	8503	Maine	ME	Maine	Existing	11.995	11.995	11.995	11.995	33.615	33.615	33.615	33.615	33.615	33.615	33.615	33.615
12553	Covanta Haverhill Landfill Gas Engine	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	1.242	1.242	1.242	1.242	1.242	1.242	1.242	1.242	1.242	1.242	1.242	1.242
12564	Waterbury Generation Facility	Generator	8501	Connectic ut	ст	Connecticut	Existing	97.911	97.911	97.911	97.911	97.911	97.911	97.911	97.911	97.911	97.911	97.911	97.911
12581	CL&P - Conservation & Load Management (CL&M) - Energy Efficiency Project	Demand	8501	Connectic ut	ст	Connecticut	Existing	223.112	223.112	223.112	223.112	223.112	223.112	223.112	223.112	223.112	223.112	223.112	223.112
12583	CL&P Distributed Generation FCM 2010	Demand	8501	Connectic ut	ст	Connecticut	Existing	34.232	34.232	34.232	34.232	34.232	34.232	34.232	34.232	34.232	34.232	34.232	34.232
12584	Conservation and Load Management Program	Demand	8501	Connectic ut	ст	Connecticut	Existing	7.708	7.708	7.708	7.708	7.708	7.708	7.708	7.708	7.708	7.708	7.708	7.708
12586	Efficiency Maine Residential Efficient Products	Demand	8503		ME	Maine	Existing	45.207	45.207	45.207	45.207	45.207	45.207	31.752	31.752	31.752	31.752	45.207	45.207
12590	Ameresco CT DSM	Demand	8501	Connectic ut	СТ	Connecticut	Existing	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4
12597	Cambridge Energy Alliance-1	Demand	8502	NEMA- Boston	МА	NEMA-Boston	Existing	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653	0.653
12598	Cambridge Energy Alliance-2	Demand	8502	NEMA- Boston	MA	NEMA-Boston	Existing	4.736	4.736	4.736	4.736	4.736	4.736	4.736	4.736	4.736	4.736	4.736	4.736
12600	UI Conservation and Load Management Programs	Demand	8501	Connectic ut	ст	Connecticut	Existing	69.799	69.799	69.799	69.799	69.799	69.799	69.799	69.799	69.799	69.799	69.799	69.799
12657	Unitil CORE Energy Efficiency Programs-2	Demand	8500	Rest-of- Pool	МА	WCMASS	Existing	5.883	5.883	5.883	5.883	5.883	5.883	5.883	5.883	5.883	5.883	5.883	5.883
12670	ngrid_nema_fca1 _eeodr	Demand	8502	NEMA- Boston	MA	NEMA-Boston	Existing	79.903	79.903	79.903	79.903	79.903	79.903	79.903	79.903	79.903	79.903	79.903	79.903
12671	ngrid_nh_fca1_ee odr	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	5.302	5.302	5.302	5.302	5.302	5.302	5.302	5.302	5.302	5.302	5.302	5.302
12672	ngrid_ri_fca1_eeo dr	Demand	8500	Rest-of- Pool	RI	Rhode Island	Existing	135.839	135.839	135.839	135.839	135.839	135.839	135.839	135.839	135.839	135.839	135.839	135.839
12673	ngrid_sema_fca1_ eeodr	Demand	8500	Rest-of- Pool	МА	SEMASS	Existing	106.678	106.678	106.678	106.678	106.678	106.678	106.678	106.678	106.678	106.678	106.678	106.678
12674	ngrid_wcma_fca1 _eeodr	Demand	8500	Rest-of- Pool	МА	WCMASS	Existing	148.091	148.091	148.091	148.091	148.091	148.091	148.091	148.091	148.091	148.091	148.091	148.091
12684	NSTAR EE NEMA	Demand	8502	NEMA- Boston Rest-of-	МА	NEMA-Boston	Existing	239.965	239.965	239.965	239.965	239.965	239.965	239.964	239.964	239.964	239.964	239.965	239.965
12685	NSTAR EE SEMA	Demand	8500	Pool	MA	SEMASS	Existing	37.859	37.859	37.859	37.859	37.859	37.859	37.859	37.859	37.859	37.859	37.859	37.859
12693	PSNH CORE Energy Efficiency Programs	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	37.811	37.811	37.811	37.811	37.811	37.811	37.811	37.811	37.811	37.811	37.811	37.811

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
12694	Acushnet Company - Ball Plant II - Combined Heat and Power Project	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	2.111	2.111	2.111	2.111	2.111	2.111	2.111	2.111	2.111	2.111	2.111	2.111
12696	7.9 MW CHP Plant		8500	Rest-of-	NH	New Hampshire	Existing	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8
12030		Bernana	8300	1001		Татрэтге	LAISTING	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
12705	Cape Light Compact Energy Efficiency Portfolio	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	23.819	23.819	23.819	23.819	23.819	23.819	23.819	23.819	23.819	23.819	23.819	23.819
42740	Bridgewater Correctional Complex	D	0500	Rest-of-		CTAAACC	Estation	4.442	4 442	4 442	4 442	4.442	4.442	4 442	4.442	4.442	4.442	4 442	4.442
12749	Cogeneration Norfolk Walpole	Demand	8500	Pool	MA	SEMASS	Existing	1.412	1.412	1.412	1.412	1.412	1.412	1.412	1.412	1.412	1.412	1.412	1.412
12752	Correctional Complex Cogeneration	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32
12753	MA SEMA state colleges	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	0.147	0.147	0.147	0.147	0.147	0.147	0.147	0.147	0.147	0.147	0.147	0.147
12754	Tewksbury State Hospital Cogenerator	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.734	0.734
12757	NHEC Energy Efficiency Programs	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.233	0.233	0.233	0.233	0.233	0.233	0.233	0.233	0.233	0.233	0.233	0.233
12779	CPLN CT On-Peak	Demand	8501	Connectic ut	ст	Connecticut	Existing	1.004	1.004	1.004	1.004	1.004	1.004	1.004	1.004	1.004	1.004	1.004	1.004
12786	CSG Aggregation of DG and 24 hr lighting EE - NEMA1	Demand	8502	NEMA- Boston	ма	NEMA-Boston	Existing	1.518	1.518	1.518	1.518	1.518	1.518	1.518	1.518	1.518	1.518	1.518	1.518
	CSG Aggregation of DG and 24 hr			Rest-of-															
12790	lighting EE -RI	Demand	8500		RI	Rhode Island	Existing	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.217
12791	CSG Aggregation of DG and 24 hr lighting EE - SEMA1	Demand	8500	Rest-of- Pool	ма	SEMASS	Existing	1.517	1.517	1.517	1.517	1.517	1.517	1.517	1.517	1.517	1.517	1.517	1.517
	CSG Aggregation of DG and 24 hr lighting EE -			Rest-of-															
12799	WCMA1	Demand	8500	Pool	MA	WCMASS	Existing	1.053	1.053	1.053	1.053	1.053	1.053	1.053	1.053	1.053	1.053	1.053	1.053
12801	UES CORE Energy Efficiency Programs	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	6.679	6.679	6.679	6.679	6.679	6.679	6.679	6.679	6.679	6.679	6.679	6.679
	University of Massachusetts Central Heating			Rest-of-															
12802	Plant-3	Demand	8500	Pool	MA	WCMASS	Existing	10.26	10.26	10.26	10.26	10.26	10.26	10.26	10.26	10.26	10.26	10.26	10.26

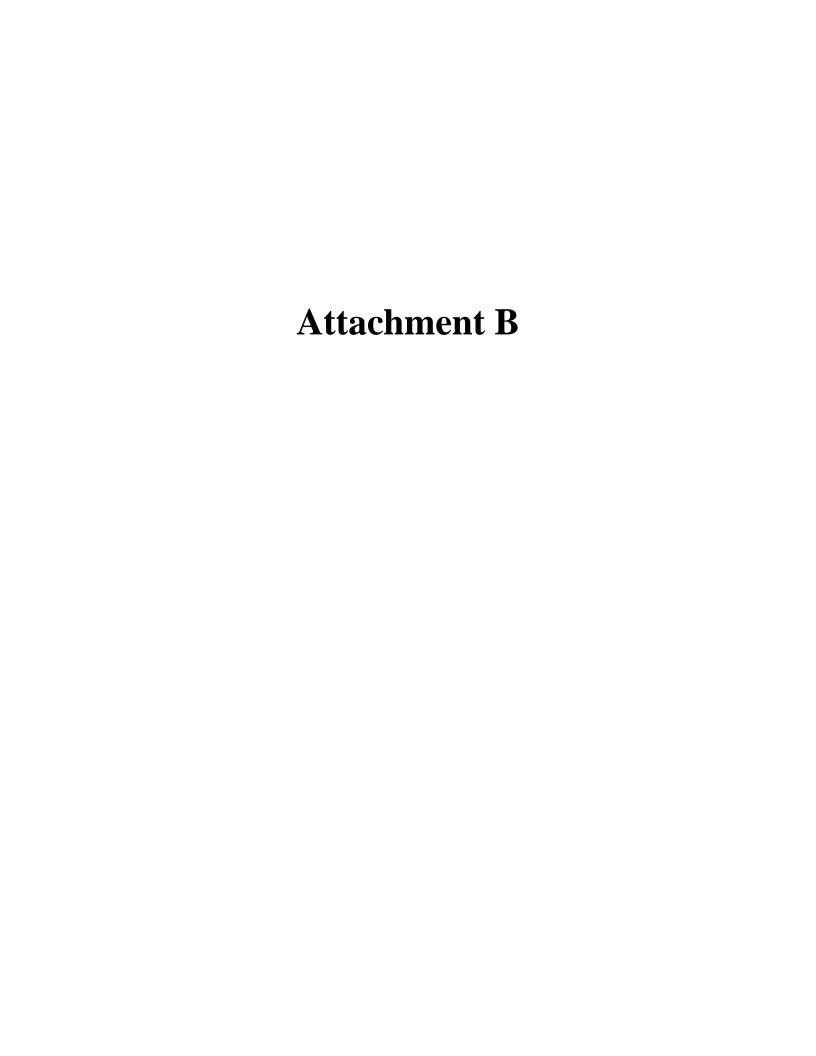
ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
			Zone ID	Name															
	WMECO - Conservation &																		
	Management			Doct of															
12806	(CL&M) - Energy Efficiency Project	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	49.016	49.016	49.016	49.016	49.016	49.016	49.016	49.016	49.016	49.016	49.016	49.016
	Burlington Electric																		
12822	Department - On- Peak Efficiency	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	3.991	3.991	3.991	3.991	3.991	3.991	4.022	4.022	4.022	4.022	3.991	3.991
12832	CPLN MA NEMA	Demand	8502	NEMA- Boston	MA	NEMA-Boston	Existing	7.106	7.106	7.106	7.106	7.106	7.106	6.561	6.561	6.561	6.561	7.106	7.106
12835	CPLN MA SEMA OP	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	0.231	0.231	0.231	0.231	0.231	0.231	0.231	0.231	0.231	0.231	0.231	0.231
12838	CPLN MA WC OP	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	7.692	7.692	7.692	7.692	7.692	7.692	7.692	7.692	7.692	7.692	7.692	7.692
12841	CPLN ME OP	Demand	8503	Maine	ME	Maine	Existing	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038	0.038
12843	CPLN RI OP	Demand	8500	Rest-of- Pool	RI	Rhode Island	Existing	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28
	Vermont																		
12845	Efficiency Portfolio-1	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	125.706	125.706	125.706	125.706	125.706	125.706	125.706	125.706	125.706	125.706	125.706	125.706
	Manchester Methane LLC East			Connectic															
13669	Windsor Facility	Generator	8501		СТ	Connecticut	Existing	1.012	1.012	1.012	1.012	1.054	1.054	1.054	1.054	1.054	1.054	1.054	1.054
13673	MATEP (DIESEL)	Generator	8502	Boston	MA	NEMA-Boston	Existing	17.783	17.783	17.783	17.783	17.783	17.783	17.783	17.783	17.783	17.783	17.783	17.783
	MATEP (COMBINED			NEMA-															
13675	CYCLE)	Generator			MA	NEMA-Boston	Existing	32.324	32.324	32.324	32.324	32.324	32.324	32.324	32.324	32.324	32.324	32.324	32.324
13703	Verso VCG1 Verso VCG2	Generator Generator		Maine Maine	ME ME	Maine Maine	Existing Existing	42.356 45.167											
13705	Verso VCG3	Generator		Maine	ME	Maine	Existing	44.097	44.097	44.097	44.097	44.097	44.097	44.097	44.097	44.097	44.097	44.097	44.097
13975	Corriveau Hydroelectric LLC	Generator	8503	Maine	ME	Maine	Existing	0.061	0.061	0.061	0.061	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045
14087	MAT3 MONTAGNE	Generator	8502	NEMA- Boston Rest-of-	МА	NEMA-Boston	Existing	17.433	17.433	17.433	17.433	17.433	17.433	17.433	17.433	17.433	17.433	17.433	17.433
14134	FARM	Generator	8500		VT	Vermont	Existing	0.084	0.084	0.084	0.084	0.084	0.084	0.084	0.084	0.084	0.084	0.084	0.084
	NORTHFIELD			Rest-of-															
14217	MOUNTAIN 1	Generator	8500	Pool	MA	WCMASS	Existing	292	292	292	292	292	292	292	292	292	292	292	292
14218	NORTHFIELD MOUNTAIN 2	Generator	geno	Rest-of- Pool	MA	WCMASS	Existing	292	292	292	292	270	270	270	270	270	270	270	270
1.210		Senerator	3300	. 551			-maunig	232	232	232	232	2/0	2/0	270	2/0	2/0	2/0	2/0	270
14219	NORTHFIELD MOUNTAIN 3	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	292	292	292	292	292	292	292	292	292	292	292	292
]																			
14220	NORTHFIELD MOUNTAIN 4	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	292	292	292	292	292	292	292	292	292	292	292	292
	Ameresco			Rest-of-															
14271	Northampton	Generator	8500	Pool	MA	WCMASS	Existing	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699	0.699
14570	FGE Energy Efficiency	Domand	9500	Rest-of-	NA A	WCMASS.	Eviction	0.410	0.416	0.410	0.446	0.410	0.410	0.410	0.410	0.416	0.410	0.410	0.416
14579	Portfolio 2011	Demand	8500	Pool	MA	WCMASS	Existing	0.416	0.416	0.416	0.416	0.416	0.416	0.416	0.416	0.416	0.416	0.416	0.416
	UES Energy																		
14580	Efficiency Portfolio 2011	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275
	UI Hot Water																		
	Heater and Timer Programs OP			Connectic															
14584	FCA2	Demand	8501	ut	СТ	Connecticut	Existing	1.179	1.179	1.179	1.179	1.179	1.179	1.179	1.179	1.179	1.179	1.179	1.179

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
14595	Granite Reliable Power	Generator	8500	Rest-of-	NH	New Hampshire	Existing	9.93	9.93	9.93	9.93	17.052	17.052	17.052	17.052	17.052	17.052	17.052	17.052
14599	Rhode Island LFG Genco, LLC - ST	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	26	26	26	26	26	26	26	26	26	26	26	26
	Princeton Wind			Rest-of-															
14610	Farm Project Kleen Energy	Generator Generator	8500 8501	Pool Connectic ut	MA CT	WCMASS Connecticut	Existing Existing	0.205 620	0.205 620	0.205 620	0.205 620	620	0.482 620	0.482 620	0.482 620	0.482 620	620	0.482 620	620
	Valley Hydro			Rest-of-															
14623	(Station No. 5)	Generator	8500	Pool	MA	WCMASS	Existing	0.214	0.214	0.214	0.214	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
14652	Templeton Wind Turbine	Generator	8500	Rest-of- Pool Rest-of-	MA	WCMASS New	Existing	0.037	0.037	0.037	0.037	0.153	0.153	0.153	0.153	0.153	0.153	0.153	0.153
14660	Lempster Wind	Generator	8500	Pool	NH	Hampshire	Existing	3.012	3.012	3.012	3.012	7.875	7.875	7.875	7.875	7.875	7.875	7.875	7.875
14661	Berkshire Wind Power Project	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	1.621	1.621	1.621	1.621	4.344	4.344	4.344	4.344	4.344	4.344	4.344	4.344
14663	WMRE Crossroads	Generator	8503	Maine	ME	Maine	Existing	2.294	2.294	2.294	2.294	2.294	2.294	2.294	2.294	2.294	2.294	2.294	2.294
14665	Record Hill Wind	Generator		Maine	ME	Maine	Existing	13.6	13.6	13.6	13.6	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7
14706	Kimberly-Clark Corp Energy Independence Project	Generator	8501	Connectic	ст	Connecticut	Existing	13.431	13.431	13.431	13.431	13.431	13.431	13.431	13.431	13.431	13.431	13.431	13.431
15415	Dartmouth Power Expansion	Generator	8500	Rest-of-	MA	SEMASS	Existing	20.611	20.611	20.611	20.611	20.611	20.611	20.611	20.611	20.611	20.611	20.611	20.611
15477	New Haven Harbor Units 2, 3, & 4	Generator	8501	Connectic ut	ст	Connecticut	Existing	129.6	129.6	129.6	129.6	129.6	129.6	129.6	129.6	129.6	129.6	129.6	129.6
15509	Plainfield Renewable Energy	Generator	8501	Connectic ut	ст	Connecticut	Existing	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5	37.5
15543	Plymouth Wind	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	0.323	0.323	0.323	0.323	0.323	0.323	0.323	0.323	0.323	0.323	0.323	0.323
15586	Gardner Wind Turbine	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	0.318	0.318	0.318	0.318	0.318	0.318	0.318	0.318	0.318	0.318	0.318	0.318
16296	Milford Hydro	Generator	8503	Maine	ME	Maine	Existing	6.422	6.422	6.422	6.422	6.643	6.643	6.643	6.643	6.643	6.643	6.643	6.643
16523 16525	Stillwater Medway	Generator Generator		Maine Maine	ME ME	Maine Maine	Existing Existing	1.582 3.443	1.582 3.443	1.582 3.443	1.582 3.443	1.483 2.869							
16547	UI C&LM Programs	Demand	8501	Connectic ut	ст	Connecticut	Existing	4.32	4.32	4.32	4.32	4.32	4.32	4.32	4.32	4.32	4.32	4.32	4.32
	Victory Road			NEMA-															
16631	Dorchester PV	Generator	8502	Boston	MA	NEMA-Boston	Existing	0.316	0.316	0.316	0.316	0	0	0	0	0	0	0	0
16640	Hilldale Ave Haverhill PV	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	0.27	0.27	0.27	0.27	0	0	0	0	0	0	0	0
16642	Railroad Street Revere PV	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	0.245	0.245	0.245	0.245	0	0	0	0	0	0	0	0
16643	Rover Street Everett PV	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	0.168	0.168	0.168	0.168	0	0	0	0	0	0	0	0
16644	Main Street Whitinsville PV	Generator	8500	Rest-of-	MA	SEMASS	Existing	0.28	0.28	0.28	0.28	0	0	0	0	0	0	0	0
	Efficiency Maine Trust Efficient																		
16651	Products	Demand	8503	Maine Rest-of-	ME	Maine New	Existing	49.993	49.993	49.993	49.993	49.993	49.993	49.993	49.993	49.993	49.993	49.993	49.993
16653	Berlin Biopower	Generator	8500	Pool	NH	Hampshire	Existing	58.7	58.7	58.7	58.7	58.7	58.7	58.7	58.7	58.7	58.7	58.7	58.7
16659	Ipswich Wind Farm 1	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	0.136	0.136	0.136	0.136	0.306	0.306	0.306	0.306	0.306	0.306	0.306	0.306

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
				Name															
16675	Fox Island Wind	Generator	8503	Maine	ME	Maine	Existing	0	0	0	0	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
16687	Bangor Hydro OP	Demand	8503	Maine Connectic	ME	Maine	Existing	11.232	11.232	11.232	11.232	11.232	11.232	11.232	11.232	11.232	11.232	11.232	11.232
16688	Nor1	Generator	8501		ст	Connecticut	Existing	1.954	1.954	1.954	1.954	1.954	1.954	1.954	1.954	1.954	1.954	1.954	1.954
16700	RI CoolSentry	Demand	8500	Rest-of- Pool	RI	Rhode Island	Existing	10.188	10.188	10.188	10.188	10.188	10.188	10.188	10.188	10.188	10.188	10.188	10.188
	Comverge			Connectic															
16713	CoolSentry 2	Demand	8501		СТ	Connecticut	Existing	5	5	5	5	5	5	5	5	5	5	5	5
16718	Comverge CoolSentry 4	Demand	8501	Connectic ut	ст	Connecticut	Existing	5	5	5	5	5	5	5	5	5	5	5	5
16729	DFC-ERG Hybrid Fuel Cell	Generator	8501	Connectic ut	ст	Connecticut	Existing	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
16737	DFC-ERG Hybrid Fuel Cell (3)	Generator	8501		ст	Connecticut	Existing	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
16738	BFCP Fuel Cell	Generator	8501		ст	Connecticut	Existing	13.054	13.054	13.054	13.054	13.054	13.054	13.054	13.054	13.054	13.054	13.054	13.054
16750	Norden #2	Generator	8501	Connectic ut	СТ	Connecticut	Existing	1.948	1.948	1.948	1.948	1.948	1.948	1.948	1.948	1.948	1.948	1.948	1.948
16752	Norden #3	Generator	8501	Connectic ut Rest-of-	ст	Connecticut	Existing	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942
16790	WCMA Project E	Demand	8500		MA	WCMASS	Existing	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
17321	RTEG_76_Springfi eld MA (7516)	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	3.866	3.866	3.866	3.866	3.866	3.866	3.866	3.866	3.866	3.866	3.866	3.866
17334	RTDR_50093_Wes tern MA (7517)	Demand	8500		MA	WCMASS	Existing	4.706	4.706	4.706	4.706	4.706	4.706	4.706	4.706	4.706	4.706	4.706	4.706
17359	Sugar River 2	Generator	8500		NH	New Hampshire	Existing	0	0	0	0	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104
35442	Seaman Energy	Generator	8500	Rest-of- Pool	МА	WCMASS	Existing	0.397	0.397	0.397	0.397	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44
35453	Efficiency Maine Trust	Demand	8503	Maine	ME	Maine	Existing	21.306	21.306	21.306	21.306	21.306	21.306	21.306	21.306	21.306	21.306	21.306	21.306
35485	Fitchburg-FCA-5	Generator	8500	Rest-of-	MA	WCMASS	Existing	2.978	2.978	2.978	2.978	2.978	2.978	2.978	2.978	2.978	2.978	2.978	2.978
35555	GMCW	Generator	8500	Rest-of-	VT	Vermont	Existing	2.38	2.38	2.38	2.38	3.54	3.54	3.54	3.54	3.54	3.54	3.54	3.54
35593	Fiske Hydro	Generator	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.057	0.057	0.057	0.057	0.113	0.113	0.113	0.113	0.113	0.113	0.113	0.113
25504	Spaulding Pond	Canaratas	0500	Rest-of-		New		0.007	0.007	0.007	0.007	0.472	0.473	0.472	0.472	0.472	0.472	0.472	0.172
35594 35656	Hydro Rainbow_2	Generator Generator	8501	Pool Connectic ut	NH CT	Hampshire Connecticut	Existing Existing	0.007	0.007	0.007	0.007	0.172	0.172	0.172	0.172	0.172	0.172	0.172	0.172 4.1
	Shrewsbury			Rest-of-															
	Diesels	Generator		Connectic	MA	WCMASS	Existing	13.75	13.75	13.75		13.75				13.75	13.75	13.75	13.75
35658	Rainbow_1 Spruce Mountain	Generator	8501	ut	СТ	Connecticut	Existing	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
35693	Wind	Generator	8503	Maine	ME	Maine	Existing	4.5	4.5	4.5	4.5	9	9	9	9	9	9	9	9
35728	Moretown LG	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	4.617	4.617	4.617	4.617	4.617	4.617	4.617	4.617	4.617	4.617	4.617	4.617
35979	Kingdom Community Wind	Generator	8500	Rest-of- Pool	VT	Vermont	Existing	12	12	12	12	21.673	21.673	21.673	21.673	21.673	21.673	21.673	21.673
37040	KENDALL STEAM	Generator	8502	NEMA-	MA	NEMA-Boston	Existing	27.75	27.75	27.75	27.75	27.75	27.75	27.75	27.75	27.75	27.75	27.75	27.75
37050	Groton Wind Project	Generator	8500	Rest-of-	NH	New Hampshire	Existing	0	0	-	0	0	-	0	-	0	0	0	0
37050	Silver lake PV	Generator	8500	Rest-of-	MA	WCMASS	Existing	0	0	0	0	0	0	0	0	0	0	0	0
	Beaver_Ridge_Wi																		
37072	nd	Generator	8503	Maine	ME	Maine	Existing	0.466	0.466	0.466	0.466	1.292	1.292	1.292	1.292	1.292	1.292	1.292	1.292
37077	Woronoco Hydro LLC	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.676	0.676	0.676	0.676	1.576	1.576	1.576	1.576	1.576	1.576	1.576	1.576
37079	Indian River Power Supply LLC	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0	0	0	0	0	0	0	0	0	0	0	0
37090	MATEP (Combined Cycle)	Generator	8502		MA	NEMA-Boston	Existing	0	0	0	0	0	0	0	0	0	0	0	0
37093	NH DR 1	Demand	8500		NH	New Hampshire	Existing	1.898	1.898	1.898	1.898	1.898	1.898	1.898	1.898	1.898	1.898	1.898	1.898
37095	WCMA DR 7515	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	8.538	8.538	8.538	8.538	8.538	8.538	8.538	8.538	8.538	8.538	8.538	8.538

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
37105	Blue Sky West	Generator		Name Maine	ME	Maine	Existing	42.27	42.27	42.27	42.27	87.3	87.3	87.3	87.3	87.3	87.3	87.3	87.3
3/103	Blue 3ky West	Generator	8303	ivialite	IVIL	ivianie	LXISTING	42.27	42.27	42.27	42.27	87.3	87.3	67.3	67.3	67.3	67.3	87.3	67.3
37112	Efficiency Maine Trust FCA6	Demand	8503	Maine	ME	Maine	Existing	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
	The second second second			Deat of															
37120	Thundermist Hydropower	Generator	8500	Rest-of- Pool	RI	Rhode Island	Existing	0	0	0	0	0.872	0.872	0.872	0.872	0.872	0.872	0.872	0.872
37853	Hess DR Northwest VT 2013-14	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	0	0	0	0	0	0	0	0	0	0	0	0
27054	Hess DR Northwest VT 2014-15	Damad	9599	Rest-of- Pool	\	.,	Fortable a	0	0		0	0	0	0	0	0	0	0	0
37854	Hess DR Northwest VT	Demand	8500		VT	Vermont	Existing	0	0	0	0	0	0	0	U	0	U	0	0
37855	2015-16	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	0	0	0	0	0	0	0	0	0	0	0	0
37889	RTDR_50092_East ern CT (7500) - 2	Demand	8501	Connectic ut	ст	Connecticut	Existing	22.293	22.293	22.293	22.293	22.293	22.293	22.293	22.293	22.293	22.293	22.293	22.293
37890	RTDR_50092_Nor thern CT (7501) -	Demand	8501	Connectic	ст	Connecticut	Existing	47.961	47.961	47.961	47.961	47.961	47.961	47.961	47.961	47.961	47.961	47.961	47.961
37890	DTDD FOODS No.	Demand	8501	ut	CI	Connecticut	EXISTING	47.961	47.961	47.961	47.961	47.961	47.901	47.961	47.961	47.961	47.961	47.961	47.901
37891	RTDR_50092_Nor walk - Stamford (7502) - 2	Demand	8501	Connectic ut	СТ	Connecticut	Existing	2.622	2.622	2.622	2.622	2.622	2.622	2.622	2.622	2.622	2.622	2.622	2.622
37892	RTDR_50092_Wes tern CT (7503) - 2	Demand	8501	Connectic	ст	Connecticut	Existing	26.254	26.254	26.254	26.254	26.254	26.254	26.254	26.254	26.254	26.254	26.254	26.254
37832	tem er (7505) - 2	Demand	8301	ut	Ci	Connecticut	EXISTING	20.234	20.234	20.234	20.234	20.234	20.234	20.234	20.234	20.234	20.234	20.234	20.234
37896	RTDR_50689_Ban gor Hydro (7504) - Grp A	Demand	8503	Maine	ME	Maine	Existing	27	27	27	27	27	27	27	27	27	27	27	27
37030		Demand	0303	Walte		Walle	Existing	2,		2,		2,	2,	2,	2,		2,	2,	
37903	RTDR_50689_Mai ne (7505) - Grp A	Demand	8503	Maine	ME	Maine	Existing	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2	43.2
37917	RTDR_50744_Bost on (7507) - Grp C		8502	NEMA- Boston	MA	NEMA-Boston	Existing	18.71	18.71	18.71	18.71	18.71	18.71	18.71	18.71	18.71	18.71	18.71	18.71
	RTDR_50744_Cen																		
37918	tral MA (7515) - Grp A	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28	2.28
	RTDR_50744_Low er SEMA (7511) -			Rest-of-															
37919	Grp C	Demand	8500		MA	SEMASS	Existing	0.939	0.939	0.939	0.939	0.939	0.939	0.939	0.939	0.939	0.939	0.939	0.939
	RTDR_50744_Nor th Shore (7508) -			NEMA-															
37920	Grp C	Demand	8502	Boston	MA	NEMA-Boston	Existing	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599
	RTDR_50744_Nor thern CT (7501) -			Connectic															
37921	Grp A	Demand	8501		СТ	Connecticut	Existing	0	0	0	0	0	0	0	0	0	0	0	0
	RTDR_50744_Nor thern CT (7501) -			Connectic															
37922	Grp B	Demand	8501		СТ	Connecticut	Existing	21.579	21.579	21.579	21.579	21.579	21.579	21.579	21.579	21.579	21.579	21.579	21.579
	RTDR_50744_Nor																		
37923	walk - Stamford (7502) - Grp A	Demand	8501	Connectic ut	СТ	Connecticut	Existing	0	0	0	0	0	0	0	0	0	0	0	0
37924	RTDR_50744_SEM A (7512) - Grp C		8500	Rest-of- Pool	MA	SEMASS	Existing	5.684	5.684	5.684	5.684	5.684	5.684	5.684	5.684	5.684	5.684	5.684	5.684
	,,		3230																
37925	RTDR_50744_Spri ngfield MA (7516) - Grp A	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38
3.323			3300	. 001			rwariik	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.36	1.30	1.30	1.30
37926	RTDR_50744_Wes tern CT (7503) - Grp A	Demand	8501	Connectic ut	ст	Connecticut	Existing	0	0	0	0	0	0	0	0	0	0	0	0

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
	RTDR_50744_Wes tern CT (7503) -			Connectic															
37927	Grp B RTDR_50786_Bost	Demand	8501	ut NEMA-	СТ	Connecticut	Existing	9.159	9.159	9.159	9.159	9.159	9.159	9.159	9.159	9.159	9.159	9.159	9.159
37928	on (7507)	Demand	8502	Boston	MA	NEMA-Boston	Existing	38.207	38.207	38.207	38.207	38.207	38.207	38.207	38.207	38.207	38.207	38.207	38.207
37929	RTDR_50786_Cen tral MA (7515)	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	7.378	7.378	7.378	7.378	7.378	7.378	7.378	7.378	7.378	7.378	7.378	7.378
37930	RTDR_50786_East ern CT (7500)	Demand	8501	Connectic ut	ст	Connecticut	Existing	2.786	2.786	2.786	2.786	2.786	2.786	2.786	2.786	2.786	2.786	2.786	2.786
37931	RTDR_50786_Low er SEMA (7511)	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41	2.41
37932	RTDR_50786_Mai ne (7505)	Demand	8503	Maine	ME	Maine	Existing	5.379	5.379	5.379	5.379	5.379	5.379	5.379	5.379	5.379	5.379	5.379	5.379
37933	RTDR_50786_Ne w Hampshire (7509)	Demand	8500	Rest-of-	NH	New Hampshire	Existing	6.612	6.612	6.612	6.612	6.612	6.612	6.612	6.612	6.612	6.612	6.612	6.612
37933	RTDR_50786_Nor	Demand	8300	NEMA-	NII	папряше	LAISTING	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
37934		Demand	8502		MA	NEMA-Boston	Existing	12.115	12.115	12.115	12.115	12.115	12.115	12.115	12.115	12.115	12.115	12.115	12.115
37935	RTDR_50786_Nor thern CT (7501)	Demand	8501	Connectic ut	СТ	Connecticut	Existing	2.789	2.789	2.789	2.789	2.789	2.789	2.789	2.789	2.789	2.789	2.789	2.789
37936	RTDR_50786_Nor walk - Stamford (7502)	Demand	8501	Connectic ut	ст	Connecticut	Existing	8.209	8.209	8.209	8.209	8.209	8.209	8.209	8.209	8.209	8.209	8.209	8.209
37937	RTDR_50786_Port land Maine (7506)	Demand	8503	Maine	ME	Maine	Existing	7.447	7.447	7.447	7.447	7.447	7.447	7.447	7.447	7.447	7.447	7.447	7.447
37938	RTDR_50786_Rho de Island (7518)	Demand	8500	Rest-of- Pool	RI	Rhode Island	Existing	12.96	12.96	12.96	12.96	12.96	12.96	12.96	12.96	12.96	12.96	12.96	12.96
37939	RTDR_50786_SEM A (7512)	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	10.449	10.449	10.449	10.449	10.449	10.449	10.449	10.449	10.449	10.449	10.449	10.449
37940	RTDR_50786_Sea coast (7510)	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139
37941	RTDR_50786_Spri ngfield MA (7516)	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	5.669	5.669	5.669	5.669	5.669	5.669	5.669	5.669	5.669	5.669	5.669	5.669
	RTDR_50786_Ver			Rest-of-															
37942	mont (7514)	Demand	8500		VT	Vermont	Existing	6.134	6.134	6.134	6.134	6.134	6.134	6.134	6.134	6.134	6.134	6.134	6.134
37943	RTDR_50786_Wes tern CT (7503)	Demand	8501	Connectic ut	ст	Connecticut	Existing	17.247	17.247	17.247	17.247	17.247	17.247	17.247	17.247	17.247	17.247	17.247	17.247
37944	RTDR_50786_Wes tern MA (7517)	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	4.781	4.781	4.781	4.781	4.781	4.781	4.781	4.781	4.781	4.781	4.781	4.781
37990	RTEG_50017_Ban gor Hydro (7504)	Demand	8503	Maine	ME	Maine	Existing	0.581	0.581	0.581	0.581	0.581	0.581	0.433	0.433	0.433	0.433	0.581	0.581
37990	RTEG_50017_Bost on (7507)	Demand		NEMA-	MA	NEMA-Boston	Existing	8.816	8.816	8.816	8.816	8.816	8.816	8.588	8.588	8.588	8.588	8.816	8.816
37993	RTEG_50017_East ern CT (7500)	Demand	8501	Connectic ut	ст	Connecticut	Existing	6.628	6.628	6.628	6.628	6.628	6.628	6.628	6.628	6.628	6.628	6.628	6.628
37994	RTEG_50017_Low er SEMA (7511)	Demand	8500	Rest-of-	MA	SEMASS	Existing	5.373	5.373	5.373	5.373	5.373	5.373	5.373	5.373	5.373	5.373	5.373	5.373
37995	RTEG_50017_Mai ne (7505)	Demand			ME	Maine	Existing	7.612	7.612	7.612	7.612	7.612	7.612	5.883	5.883	5.883	5.883	7.612	7.612
37996	RTEG_50017_New Hampshire (7509)	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	13.338	13.338	13.338	13.338	13.338	13.338	11.361	11.361	11.361	11.361	13.338	13.338


ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
37997	RTEG_50017_Nort h Shore (7508)	Demand	8502	NEMA-	MA	NEMA-Boston	Existing	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72	1.72
	RTEG_50017_Nort hern CT (7501)	Demand		Connectic		Connecticut													
37998	RTEG_50017_Nort	Demand	8501		СТ	Connecticut	Existing	3.528	3.528	3.528	3.528	3.528	3.528	3.528	3.528	3.528	3.528	3.528	3.528
37999	hwest Vermont (7513)	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	1.768	1.768	1.768	1.768	1.768	1.768	1.768	1.768	1.768	1.768	1.768	1.768
38001	RTEG_50017_Port land Maine (7506)	Demand	8503	Maine	ME	Maine	Existing	3.609	3.609	3.609	3.609	3.609	3.609	2.983	2.983	2.983	2.983	3.609	3.609
38004	RTEG_50017_Seac oast (7510)	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	0.684	0.684	0.684	0.684	0.684	0.684	0.684	0.684	0.684	0.684	0.684	0.684
	RTEG_50017_Spri			Rest-of-															
38005	ngfield MA (7516) RTEG_50017_Ver	Demand	8500	Rest-of-	MA	WCMASS	Existing	3.19	3.19	3.19	3.19	3.19	3.19	2.656	2.656	2.656	2.656	3.19	3.19
38006	mont (7514) RTEG_50017_Wes	Demand	8500	Pool Rest-of-	VT	Vermont	Existing	1.098	1.098	1.098	1.098	1.098	1.098	1.098	1.098	1.098	1.098	1.098	1.098
38008	tern MA (7517) RTEG_50092_East	Demand	8500	Pool Connectic	MA	WCMASS	Existing	3.162	3.162	3.162	3.162	3.162	3.162	3.142	3.142	3.142	3.142	3.162	3.162
38009	ern CT (7500) - 2	Demand	8501	ut	СТ	Connecticut	Existing	11.829	11.829	11.829	11.829	11.829	11.829	11.829	11.829	11.829	11.829	11.829	11.829
38010	RTEG_50092_Nort hern CT (7501) - 2	Demand	8501	Connectic	ст	Connecticut	Existing	24.807	24.807	24.807	24.807	24.807	24.807	24.807	24.807	24.807	24.807	24.807	24.807
38011	RTEG_50092_Nor walk - Stamford (7502) - 2	Demand	8501	Connectic ut	ст	Connecticut	Existing	7.234	7.234	7.234	7.234	7.234	7.234	7.234	7.234	7.234	7.234	7.234	7.234
38012	RTEG_50092_Wes tern CT (7503) - 2	Demand	8501	Connectic ut	ст	Connecticut	Existing	31.807	31.807	31.807	31.807	31.807	31.807	31.807	31.807	31.807	31.807	31.807	31.807
38057	Efficiency Maine Trust FCA6 B	Demand	8503	Maine	ME	Maine	Existing	30.457	30.457	30.457	30.457	30.457	30.457	43.912	43.912	43.912	43.912	30.457	30.457
38078	NFM Solar Power, LLC	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.507	0.507	0.507	0.507	0	0	0	0	0	0	0	0
38089	Footprint Combined Cycle	Generator	8502	NEMA- Boston	MA	NEMA-Boston	Existing	674	674	674	674	674	674	674	674	674	674	674	674
38095	Cape Wind Offshore	Generator	8500	Rest-of- Pool	MA	SEMASS	Existing	0	0	0	0	0	0	0	0	0	0	0	0
38110	West Brookfield Solar	Generator	8500	Rest-of- Pool	MA	WCMASS	Existing	0.41	0.41	0.41	0.41	0	0	0	0	0	0	0	0
	East Bridgewater Solar Energy			Rest-of-															
38114	Project Harrington Street	Generator	8500	Rest-of-	MA	SEMASS	Existing	0.85	0.85	0.85	0.85	0	0	0	0	0	0	0	0
38115	PV Project RTDR_50017_Ban	Generator	8500	Pool	MA	WCMASS	Existing	1.43	1.43	1.43	1.43	0	0	0	0	0	0	0	0
38120	gor Hydro (7504) - 3	Demand	8503	Maine	ME	Maine	Existing	2.436	2.436	2.436	2.436	2.436	2.436	2.436	2.436	2.436	2.436	2.436	2.436
38121	RTDR_50017_Bost on (7507) - 3	Demand	8502	NEMA- Boston	MA	NEMA-Boston	Existing	5.847	5.847	5.847	5.847	5.847	5.847	3.23	3.23	3.23	3.23	5.847	5.847
38122	RTDR_50017_Cen tral MA (7515) - 3	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	21.597	21.597	21.597	21.597	21.597	21.597	18.836	18.836	18.836	18.836	21.597	21.597
38123	RTDR_50017_East ern CT (7500) - 3	Demand	8501	Connectic ut	ст	Connecticut	Existing	6.084	6.084	6.084	6.084	6.084	6.084	6.084	6.084	6.084	6.084	6.084	6.084

ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
	RTDR_50017_Low		Zone ib	Name															
38124	er SEMA (7511) - 3	Demand	8500	Rest-of- Pool	MA	SEMASS	Existing	5.161	5.161	5.161	5.161	5.161	5.161	4.353	4.353	4.353	4.353	5.161	5.161
38125	RTDR_50017_Mai ne (7505) - 3	Demand	8503	Maine	ME	Maine	Existing	103.327	103.327	103.327	103.327	103.327	103.327	105.83	105.83	105.83	105.83	103.327	103.327
	RTDR_50017_Ne																		
38126	w Hampshire (7509) - 3	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	12.042	12.042	12.042	12.042	12.042	12.042	11.323	11.323	11.323	11.323	12.042	12.042
38127	RTDR_50017_Nor th Shore (7508) -	Demand	9503	NEMA- Boston	MA	NEMA-Boston	Fuisting	4.673	4.673	4.673	4.673	4.673	4.673	3.812	3.812	3.812	3.812	4.673	4.673
36127	RTDR_50017_Nor	Demand	8502		IVIA	INEIVIA-BOSTOII	EXISTING	4.073	4.073	4.073	4.073	4.073	4.073	3.812	3.612	3.612	5.612	4.073	4.673
38128	thern CT (7501) - 3	Demand	8501	Connectic ut	ст	Connecticut	Existing	6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.15
	RTDR_50017_Nor thwest Vermont			Rest-of-															
38129	(7513) - 3	Demand	8500	Pool	VT	Vermont	Existing	17.062	17.062	17.062	17.062	17.062	17.062	24.19	24.19	24.19	24.19	17.062	17.062
38130	RTDR_50017_Nor walk - Stamford (7502) - 3	Demand	8501	Connectic ut	ст	Connecticut	Existing	9.48	9.48	9.48	9.48	9.48	9.48	9.48	9.48	9.48	9.48	9.48	9.48
	RTDR_50017_Port																		
38131	land Maine (7506) - 3	Demand	8503	Maine	ME	Maine	Existing	6.315	6.315	6.315	6.315	6.315	6.315	6.315	6.315	6.315	6.315	6.315	6.315
38132	RTDR_50017_Rho de Island (7518) - 3	Demand	8500	Rest-of- Pool	RI	Rhode Island	Existing	34.447	34.447	34.447	34.447	34.447	34.447	30.916	30.916	30.916	30.916	34.447	34.447
	RTDR_50017_SEM			Rest-of-															
38133	A (7512) - 3	Demand	8500		MA	SEMASS	Existing	31.944	31.944	31.944	31.944	31.944	31.944	26.988	26.988	26.988	26.988	31.944	31.944
38134	RTDR_50017_Sea coast (7510) - 3	Demand	8500	Rest-of- Pool	NH	New Hampshire	Existing	1.823	1.823	1.823	1.823	1.823	1.823	1.823	1.823	1.823	1.823	1.823	1.823
	RTDR_50017_Spri ngfield MA (7516)			Rest-of-															
38135	- 3	Demand	8500	Pool	MA	WCMASS	Existing	13.684	13.684	13.684	13.684	13.684	13.684	11.674	11.674	11.674	11.674	13.684	13.684
38136	RTDR_50017_Ver mont (7514) - 3	Demand	8500	Rest-of- Pool	VT	Vermont	Existing	5.711	5.711	5.711	5.711	5.711	5.711	6.1	6.1	6.1	6.1	5.711	5.711
38137	RTDR_50017_Wes tern CT (7503) - 3	Demand	8501	Connectic	ст	Connecticut	Existing	49.374	49.374	49.374	49.374	49.374	49.374	49.374	49.374	49.374	49.374	49.374	49.374
	RTDR_50017_Wes			Rest-of-															
38138	tern MA (7517) - 3		8500		MA	WCMASS	Existing	25.875	25.875	25.875	25.875	25.875	25.875	23.522	23.522	23.522	23.522	25.875	25.875
38139	RTEG_50017_Cen tral MA (7515) - 3	Demand	8500	Rest-of- Pool	MA	WCMASS	Existing	16.716	16.716	16.716	16.716	16.716	16.716	16.716	16.716	16.716	16.716	16.716	16.716
	RTEG_50017_Nor walk - Stamford			Connectic															
38140	(7502) - 3	Demand	8501		ст	Connecticut	Existing	10.156	10.156	10.156	10.156	10.156	10.156	10.156	10.156	10.156	10.156	10.156	10.156
38141	RTEG_50017_Rho de Island (7518) - 3	Demand	8500	Rest-of- Pool	RI	Rhode Island	Existing	33.54	33.54	33.54	33.54	33.54	33.54	29.149	29.149	29.149	29.149	33.54	33.54
204.12	RTEG_50017_SEM	Don: '		Rest-of-		CENARCE	5.4.11	40		40	40.55	40	40		as	40.55		40.55	
38142	A (7512) - 3	Demand	8500	Pool	MA	SEMASS	Existing	10.589	10.589	10.589	10.589	10.589	10.589	10.589	10.589	10.589	10.589	10.589	10.589
38143	RTEG_50017_Wes tern CT (7503) - 3	Demand	8501		ст	Connecticut	Existing	42.349	42.349	42.349	42.349	42.349	42.349	42.349	42.349	42.349	42.349	42.349	42.349
1226	TIVERTON POWER	Generator	8500	Rest-of- Pool	RI	Rhode Island	New	0	0	0	0	0	0	0	0	0	0	0	0
	CL&P - Conservation & Load																		
12581	Management (CL&M) - Energy Efficiency Project	Demand	8501	Connectic ut	ст	Connecticut	New	3.456	3.456	3.456	3.456	3.456	3.456	3.456	3.456	3.456	3.456	3.456	3.456

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
				ivame															
12600	UI Conservation and Load Management Programs	Demand	8501	Connectic	ст	Connecticut	New	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16
12600	Programs	Demand	8301	ut	CI	Connecticut	New	2.10	2.10	2.10	2.10	2.10	2.16	2.10	2.16	2.10	2.10	2.10	2.16
12657	Unitil CORE Energy Efficiency Programs-2	Demand	8500	Rest-of- Pool	MA	WCMASS	New	1.279	1.279	1.279	1.279	1.279	1.279	1.279	1.279	1.279	1.279	1.279	1.279
12670	ngrid_nema_fca1 _eeodr	Demand		NEMA- Boston	MA	NEMA-Boston	New	18.632	18.632	18.632	18.632	18.632	18.632	18.632	18.632	18.632	18.632	18.632	18.632
12671	ngrid_nh_fca1_ee odr	Demand	8500	Rest-of- Pool	NH	New Hampshire	New	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649	0.649
12672	ngrid_ri_fca1_eeo dr	Demand	8500	Rest-of- Pool	RI	Rhode Island	New	21.61	21.61	21.61	21.61	21.61	21.61	21.61	21.61	21.61	21.61	21.61	21.61
12673	ngrid_sema_fca1_ eeodr	Demand	8500	Rest-of- Pool	MA	SEMASS	New	24.429	24.429	24.429	24.429	24.429	24.429	24.429	24.429	24.429	24.429	24.429	24.429
12674	ngrid_wcma_fca1 _eeodr	Demand	8500	Rest-of- Pool NEMA-	MA	WCMASS	New	32.08	32.08	32.08	32.08	32.08	32.08	32.08	32.08	32.08	32.08	32.08	32.08
12684	NSTAR EE NEMA	Demand	8502	Boston Rest-of-	MA	NEMA-Boston	New	110.48	110.48	110.48	110.48	110.48	110.48	110.48	110.48	110.48	110.48	110.48	110.48
12685	NSTAR EE SEMA	Demand	8500		МА	SEMASS	New	27.538	27.538	27.538	27.538	27.538	27.538	27.538	27.538	27.538	27.538	27.538	27.538
	PSNH CORE Energy Efficiency			Rest-of-		New													
12693	Programs	Demand	8500	Pool	NH	Hampshire	New	11.802	11.802	11.802	11.802	11.802	11.802	11.802	11.802	11.802	11.802	11.802	11.802
	Cape Light Compact Energy Efficiency			Rest-of-															
12705	Portfolio	Demand	8500	Pool	MA	SEMASS	New	7.579	7.579	7.579	7.579	7.579	7.579	7.579	7.579	7.579	7.579	7.579	7.579
12757	NHEC Energy Efficiency Programs	Demand	8500	Rest-of- Pool	NH	New Hampshire	New	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
12779	CPLN CT On-Peak	Demand	8501	Connectic	СТ	Connecticut	New	0	0	0	0	0		0	0	0	0	0	0
	CSG Aggregation of DG and 24 hr																		
12786	lighting EE - NEMA1	Demand	8502	NEMA- Boston	MA	NEMA-Boston	New	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8
	UES CORE Energy																		
12801	Efficiency Programs	Demand	8500	Rest-of- Pool	NH	New Hampshire	New	0.869	0.869	0.869	0.869	0.869	0.869	0.869	0.869	0.869	0.869	0.869	0.869
	Burlington Electric																		
12822	Department - On- Peak Efficiency CPLN MA SEMA	Demand	8500	Rest-of- Pool Rest-of-	VT	Vermont	New	2	2	2	2	2	2	2	2	2	2	2	2
12835	OP OP	Demand	8500	Pool	MA	SEMASS	New	0	0	0	0	0	0	0	0	0	0	0	0
12845	Vermont Efficiency Portfolio-1	Demand	8500	Rest-of- Pool	VT	Vermont	New	0	0	0	0	0	0	0	0	0	0	0	0
16653	Berlin Biopower	Generator	8500	Rest-of- Pool	NH	New Hampshire	New	6.68	6.68	6.68	6.68	6.68	6.68	6.68	6.68	6.68	6.68	6.68	6.68
37112	Efficiency Maine Trust FCA6	Demand	8503	Maine	ME	Maine	New	0	0	0	0	0	0	0	0	0	0	0	0
	Efficiency Maine																		
38057	Trust FCA6 B	Demand	8503	Maine	ME	Maine	New	22.195	22.195	22.195	22.195	22.195	22.195	22.195	22.195	22.195	22.195	22.195	22.195

The Principle The Principl	ID	Name	Туре	Capacity Zone ID	Capacity Zone	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
Proceedings		RTDR 50017 Nor			Name															
1514 Market Mar	38129	thwest Vermont	Demand	8500		VT	Vermont	New	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16
Section Sect	38144		Import	8503	Maine			New	29	29	29	29	29	29	29	29	29	29	29	29
Section Sect	38145		Import	8500				New	0	0	0	0	0	0	0	0	0	0	0	0
1825 Security 1820 Se	301-13			0300				iicii												
March Marc	38146		Import	8500				New	0	0	0	0	0	0	0	0	0	0	0	0
Section Sect	38147		Import	8500				New	0	0	0	0	0	0	0	0	0	0	0	0
Care Street Secondary Se								New	0	0	0	0	0	0	0	0	0	0	0	0
Description	301-10	recircity romand	трогс	0303	Wante			iie.ii												
State 1973-38 Import State 1973-38 Major State 1973-38 197																				
18150 2010 18150 2010 18150 2010	38149		Import	8500				New	79.134	79.134	79.134	79.134	79.134	79.134	79.134	79.134	79.134	79.134	79.134	79.134
1915 1917					Post of															
Section Sect	38150		Import	8500				New	250	250	250	250	250	250	250	250	250	250	250	250
Section Sect	38151		Import	8500				New	120	120	120	120	120	120	120	120	120	120	120	120
Decided Heritainer Import Section Rest of New 3.2 3.	38152		Import	8500				New	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Rest-of- Rest-of-					Rest-of-															
Section Sect					Rest-of-															
Best-of- Best-of-	38154	High Acres I FCA8	Import	8500				New	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Rest-of- Rest-of-					Rest-of-															6.4
33158					Rest-of-															6.1
38159 7-18 mport 8500 Pool New 111	38158		Import	8500				New	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
38163 18	38159		Import	8500				New	111	111	111	111	111	111	111	111	111	111	111	111
HQ_NY_Yearly_17- Import Rest-of- Res	38163		Import	8503	Maine			New	173	173	173	173	173	173	173	173	173	173	173	173
HQ_PII_Yearly_17- Rest-of- Seneral Energy Grandfathered Import 8500 Pool New 126		HQ_NY_Yearly_17-			Rest-of-															
Seneca Energy Grandfathered Seneca Energy Seneca Energy Seneca Energy Non- Seneca Energy Seneca		HQ_PII_Yearly_17-			Rest-of-															
Seneral Energy Seneral Energy Seneral Energy Non-	38167		Import	8500	Pool			New	126	126	126	126	126	126	126	126	126	126	126	126
Seneca Energy Non- Rest-of- Senerator Rest-of- Southbridge Landfill Gas to Southbridge Landfill Gas to Senerator Sen	38171	Grandfathered	Import	8500				New	45	45	45	45	45	45	45	45	45	45	45	45
Non- Section New N			, ,																	
38173 Wind Generator 8503 Maine Connectic ME Maine New 5.5 5.5 5.5 5.5 15	38172	Non-	Import	8500				New	5	5	5	5	5	5	5	5	5	5	5	5
Southbridge Landfill Gas to Secretary Southbridge Southbridge Landfill Gas to Secretary Secretary	38173		Generator	<u>8</u> 503	Maine	ME	Maine	New	5.5	5.5	5.5	5.5	15	15	15	15	15	15	15	15
Landfill Gas to Rest-of- MA WCMASS New 1.4		HS1			Connectic	ст	Connecticut		0	0	0	0	0	0	0	0	0	0	0	0
Landfill Gas to Rest-of- MA WCMASS New 1.4		Couthbuilder																		
38181 Westford Solar Generator 8500 Pool MA WCMASS New 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38178	Landfill Gas to	Generator	8500	Pool	МА	WCMASS	New	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
MAT-2 (MATEP NEMA- NEMA-	38181	Westford Solar	Generator	8500		МА	WCMASS	New	0	0	0	0	0	0	0	0	0	0	0	0
	20102		Concret	0500		10.40	NEMA Darter	Novi	43.05	13.05	13.05	12.05	42.0=	42.0=	13.05	43.05	13.05	43.05	43.0=	13.85

ID	Name	Туре	Capacity Zone ID	Capacity Zone Name	State	Load Zone	Status	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18	Apr-18	May-18
	RTDR 50689 Nor			NEMA-															
		Demand	8502	Boston	MA	NEMA-Boston	New	11.326	11.326	11.326	11.326	11.326	11.326	11.326	11.326	11.326	11.326	11.326	11.326
	RTDR_50689_Bost			NEMA-															
38213	on_38213	Demand	8502	Boston	MA	NEMA-Boston	New	0	0	0	0	0	0	0	0	0	0	0	0
38216	WCMA CHP	Demand	8500	Rest-of- Pool	MA	WCMASS	New	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613
38217	RI CHP	Demand	8500	Rest-of- Pool	RI	Rhode Island	New	10.399	10.399	10.399	10.399	10.399	10.399	10.399	10.399	10.399	10.399	10.399	10.399
30217	WMECO EE		0300	Rest-of-				10.555	10.333	10.555	10.555	10.555	10.333	10.555	10.555	10.555	10.555	10.555	10.555
38219	WCMA	Demand	8500		MA	WCMASS	New	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.4	32.4
				Rest-of-															
38221	SEMA EE	Demand	8500	Pool	MA	SEMASS	New	0	0	0	0	0	0	0	0	0	0	0	0
38222	WCMA EE	Demand	8500	Rest-of- Pool	MA	WCMASS	New	0	0	0	0	0	0	0	0	0	0	0	0

UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION

ISO New England Inc.) Docket No. ER14-___-000

TESTIMONY OF STEPHEN J. ROURKE

1	Q:	PLEASE STATE YOUR NAME, TITLE AND BUSINESS ADDRESS.
2	A:	My name is Stephen J. Rourke. I am Vice President of System Planning with ISO
3		New England Inc. (the "ISO"). My business address is One Sullivan Road,
4		Holyoke, Massachusetts 01040.
5		
6	Q:	PLEASE DESCRIBE YOUR EDUCATIONAL BACKGROUND AND
7		WORK EXPERIENCE.
8	A:	I have a B.S. in Electrical Engineering from Worcester Polytechnic Institute and a
9		M.B.A. from Western New England College. In my current position as Vice
10		President of System Planning, I am responsible for overseeing development of the
11		annual Regional System Plan ("RSP"); analysis and approval of new transmission
12		and generation interconnection projects, including the approval of qualification of
13		generating capacity resources, demand resources, and import capacity resources
14		to participate in the Forward Capacity Auction ¹ ("FCA"); implementing the
15		Federal Energy Regulatory Commission ("Commission" or "FERC") approved
16		generator interconnection process; developing the ISO's findings for

¹ Capitalized terms used but not otherwise defined in this filing have the meanings ascribed thereto in the ISO's Transmission, Markets and Services Tariff (the "Tariff"). Section III of the Tariff is Market Rule 1.

1		Transmission Cost Allocation; and supporting the capacity market in New
2		England.
3		
4		Previously, I served as the ISO's Director, Reliability and Operations Services. I
5		was also a former manager of the Rhode Island—Eastern Massachusetts—
6		Vermont Energy Control ("REMVEC") center in Westborough, Massachusetts
7		and former manager of marketing operations for Northeast Utilities/Select Energy
8		Inc. in Berlin, Connecticut. I have over 30 years of experience in the operations
9		and planning of the New England bulk power system.
10		
11	Q:	WHAT IS THE PURPOSE OF YOUR TESTIMONY?
12	A:	The first purpose of my testimony is to certify that resources participating in the
13		recent eighth FCA held on February 3, 2014 were properly qualified in
14		accordance with Section III.13.1 of the Tariff. Section III.13.8.2 (b) of the Tariff
15		requires that documentation regarding the competitiveness of the FCA be filed
16		with the Commission. Section III.13.8.2 (b) states that such documentation may
17		include a certification from the ISO that all entities offering and bidding in the
18		FCA were properly qualified in accordance with Section III.13.1 of the Tariff.
19		My testimony provides such certification.
20 21		Further, my testimony explains the ISO's conclusion regarding the auction prices
22		resulting from the eighth FCA.
23		

1	Q:	WERE ALL RESOURCES OFFERING AND BIDDING IN THE FCA
2		HELD ON FEBRUARY 3, 2014 PROPERLY QUALIFIED IN
3		ACCORDANCE WITH SECTION III.13.1?
4	A:	Yes. Section III.13.1 of the Tariff sets forth the process for qualification in the
5		FCA. In my role as Vice President of System Planning, I was responsible for
6		overseeing the qualification of all resources in the eighth FCA held on February 3
7		2014. I certify that all resources offering and bidding in the FCA were properly
8		qualified in accordance with Section III.13.1. In a November 5, 2013 filing with
9		the Commission, the ISO explained the qualification process for resources to
10		participate in the eighth FCA. ² The Commission approved the Informational
11		Filing on January 16, 2014. ³
12		
13	Q:	WHAT WAS YOUR ROLE IN THE RELIABILITY REVIEW OF THE
14		VARIOUS DE-LIST BIDS?
15	A:	As the Vice President of System Planning, I oversaw the reliability review of all
16		submitted de-list bids.
17		
18	Q:	PLEASE DESCRIBE THE ISO'S REVIEW OF DE-LIST BIDS.

.

² *ISO New England Inc.*, Informational Filing for Qualification in the Forward Capacity Market, Docket No. ER14-329-000 (filed November 5, 2013) ("Informational Filing").

 $^{^3}$ ISO New England Inc., Order Accepting Informational Filing, 146 FERC \P 61,014 (2014) ("Informational Filing Order").

submits a de-list bid.⁴ There are two types of review performed by the ISO on the 2 3 de-list bids. 4 First, as described in the Informational Filing, the ISO's Internal Market Monitor 5 ("IMM") reviews Permanent and Static De-List Bids to determine whether the bids are consistent with the resource's net risk-adjusted going forward and 6 7 opportunity costs. This review is not performed for Dynamic De-List Bids, which 8 are submitted during the auction itself if the price drops below a prescribed 9 threshold. For the eighth FCA, this threshold was \$1.00/kW-month.

Under the Tariff, all existing resources participate in the FCA, unless the resource

10

11

12

13

14

15

16

17

18

19

20

1

A:

Q. WHAT IS THE OTHER TYPE OF REVIEW THAT THE ISO PERFORMS WITH REGARD TO DE-LIST BIDS?

A: Prior to the eighth FCA, pursuant to Section III.13.2.5.2.5 of the Tariff, the ISO reviewed each Permanent De-List Bid, Static De-List Bid, and Export Bid to determine if the capacity associated with the bids was needed for reliability during the Capacity Commitment Period associated with the FCA. The Tariff provides that capacity will be needed for reliability if the absence of that capacity would result in violation of any NERC, NPCC, or ISO criteria. If the capacity associated with the de-list bid is determined not to be needed for reliability, and the auction price falls below the de-list bid price (meaning they were not required

⁴ Section III.13.2.3.2(c) of the Tariff.

⁵ Section III.13.2.5.2.5 of the Tariff.

1		for regional or zonal resource adequacy), the capacity associated with the bid is
2		removed from the auction.
3	Q:	FOR THE EIGHTH FCA, HOW MANY DE-LIST BIDS DID THE ISO
4		REVIEW FOR RELIABILITY?
5	A.	For the eighth FCA, a total of 7,751 MW of pre-auction Static De-list Bids were
6		submitted by the Existing Capacity Qualification Deadline and reviewed by the
7		IMM. However, pursuant to Tariff Section III.13.1.2.3.2.1.1.2, some participants
8		elected to withdraw their Static De-list Bids. In addition, nine resources ⁶
9		converted their Static De-list Bids into Non-Price Retirement Requests ("NPPR")
10		This resulted in 4,009 MW of Static De-list Bids being reviewed for reliability.
11		Because the auction price did not go below \$1.00/kW-month, no Dynamic De-
12		List Bids were submitted. Also, for the eighth FCA no Permanent De-list Bids or
13		Export Bids were submitted.
14		
15	Q:	DID THE ISO REVIEW SHOW THE NEED TO RETAIN FOR
16		RELIABILITY ANY DE-LIST BIDS SUBMITTED FOR THE EIGHTH
17		FCA?
18	A.	No.
19		
20	Q.	FOR THE EIGHTH FCA, HOW MANY NPRRS DID THE ISO REVIEW
21		FOR RELIABILITY?

⁶ The nine resources included Norwalk Harbor Station (3), Brayton Point Station (5), and Citizens Block Load.

1	A.	For the eighth FCA, a total of 3,135 MW of NPRRs were submitted ⁷ and
2		reviewed for reliability pursuant to Tariff Section III.13.2.5.2.5 and Planning
3		Procedure No. 10.
4		
5	Q:	DID THE ISO REVIEW SHOW THE NEED TO RETAIN FOR
6		RELIABILITY ANY NPRR SUBMITTED FOR THE EIGHTH FCA?
7	A.	Yes. Brayton Point Station generators 1 – 4 submitted a NPRR on October 6,
8		2013 and, on December 20, 2013, the ISO provided the determination that the
9		four resources, totaling 1,525 MW, 8 were needed for reliability. However, on
10		January 27, 2014, the ISO was informed that these four resources would seek
11		retirement effective June 1, 2017. As a result, the Brayton Point Station $1-4$
12		generators did not participate in the eighth FCA.
13		
14	Q:	WHEN DID THE AUCTION CONCLUDE?
15	A.	The auction commenced at the starting price of \$15.82/kW-month and concluded
16		at \$14.99/kW-month when a resource submitted an offer to withdraw from the
17		auction if the price fell lower. The auction clearing function reset the Capacity
18		Clearing Price to \$15.00/kW-month. The auction concluded with 33,702 MW of
19		resources receiving Capacity Supply Obligations to meet an Installed Capacity
20		Requirement ("ICR") of 33,855 MW for the 2017-2018 Capacity Commitment
21		Period.

⁷ NPRR submissions are available at: http://www.iso-ne.com/genrtion_resrcs/reports/sts_non_retrmnt_rqst/index.html

 $^{^{8}}$ The Brayton Point diesels, representing 10 MW as a single resource, were not retained for reliability.

1	Q:	THE CAPACITY CLEARING PRICE FOR THE EIGHTH FCA IS
2		DIFFERENT FROM PREVIOUS AUCTIONS. PLEASE EXPLAIN WHY.
3	A.	The ISO previously has held seven capacity auctions since 2008. In each of these
4		auctions, with one limited exception, 9 the market cleared at the price floor and the
5		region had procured significantly excess capacity. As recently as the fall of 2013,
6		it appeared very likely that a surplus of capacity resources (both new and existing)
7		would be participating in the eighth FCA.
8		
9		Well after the deadline for seeking to qualify new resources to participate in the
10		eighth FCA, however, the capacity supply situation in New England changed
11		dramatically. In August, Entergy announced the retirement of the Vermont
12		Yankee nuclear plant (604 MW) and submitted an NPPR. ¹⁰ On October 16, 2013
13		the ISO determined the resource was not needed for reliability. In late
14		September/early October an additional nearly 2,400 MWs requested to leave the
15		market by submitting NPRRs, specifically five resources representing1,535 MW
16		from the Brayton Point Station, three resources representing 342 MW from
17		Norwalk Harbor Station and 554 MW of demand response resources. On
18		December 20, 2013 the ISO issued the reliability determination for these
19		resources. Only the Brayton Point Station 1 – 4 generators were needed for
20		reliability. Given Brayton Point's subsequent decision to retire on June 1, 2017,

⁹ In FCA 7, the NEMA/Boston Capacity Zone began the auction needing new capacity. Footprint Power cleared the auction at price of \$14.99/kW-month and, because of Insufficient Competition in that zone, all existing resources that received Capacity Supply Obligations will be paid \$6.66/kW-month.

¹⁰ NPPRs are addressed in Section III.13.2.5.2.5 of the Tariff.

these events combined to change the supply-demand balance from a surplus of existing resources of over 2,000 MWs to a deficiency of over 1,000 MWs compared to the ICR. This abrupt change in the supply-demand balance coupled with a general decline in the amount of new resources seeking to participate in the auction resulted in the auction prices being set by the administrative pricing rules in the Tariff.

A.

Q: WHAT IS THE FINAL SET OF CAPACITY ZONES RESULTING FROM

THE AUCTION?

In accordance with Section III.12.4 of the Tariff, the ISO modeled the following Capacity Zones for the eighth FCA: Maine, Connecticut, NEMA/Boston and Rest-of-Pool. The NEMA/Boston Capacity Zone includes the Greater Boston and North Shore regions of Massachusetts. The Rest-of-Pool Capacity Zone includes Southeastern Massachusetts, Western/Central Massachusetts, Rhode Island, New Hampshire, and Vermont. As set forth in the Informational Filing, given potential export constraints, the ISO modeled Maine as an export-constrained Capacity Zone and, given potential import constraints, Connecticut and NEMA/Boston as import-constrained Capacity Zones. Import-constrained zones are areas that may not have adequate local resources and transmission capability to reliably serve local demand. The Local Sourcing Requirement is the minimum amount of capacity that must be electrically located within an import-constrained zone. As detailed in the Informational Filing, for the eighth FCA, the Local Sourcing

1		Requirement for the Connecticut and NEMA/Boston zones are 7,319 MW and
2		3,428 MW, respectively. 11
3		The Maximum Capacity Limit is the maximum amount of capacity that can be
4		procured within an export-constrained zone to meet the NICR. The Maximum
5		Capacity Limit for the Maine export-constrained Load Zone is 3,960 MW. 12
6		This is the amount of capacity resources that can be procured in the eighth FCA
7		from the Maine Capacity Zone.
8		
9	Q:	WHAT IS THE CAPACITY CLEARING PRICE IN EACH OF THE FOUR
10		CAPACITY ZONES?
11	A.	Pursuant to Section III.13.2.4 of the Tariff, each Capacity Zone modeled in the
12		FCA had the same starting price, which for the eighth FCA was set at \$15.82/kW-
13		month. The Capacity Clearing Price in the Maine, Connecticut, and Rest-of-Pool
14		Capacity Zones is \$15.00/kW-month, which will be paid to new resources.
15		Existing resources in those Capacity Zones will receive \$7.025/kW-month. In the
16		NEMA/Boston Capacity Zone, both new and existing resources will be paid
17		\$15.00/kW-month.
18		
19	Q:	WHY ARE THE PRICES FOR NEW AND EXISTING RESOURCES
20		DIFFERENT IN ALL THE CAPACITY ZONES EXCEPT
21		NEMA/BOSTON?

¹¹ Informational Filing at p. 8.

¹² *Id.* at pp. 8-9.

A. Although the FCA is intended to produce a single price for all new and existing resources, subject only to zonal differences, under certain conditions the prices paid for new and existing resources may differ. The provisions in the Tariff relating to Insufficient Competition ("IC Rule"), Capacity Carry Forward ("Carry Forward Rule") and the Capacity Clearing Price Floor determined the prices for the eighth FCA.

7

8

1

2

3

4

5

6

Q: WHAT IS THE IC RULE?

9 A. The IC Rule addresses situations where there are less existing resources than the 10 Net Installed Capacity Requirement ("NICR") and not enough qualified new 11 resources to assure adequate competition in the auction (although when 12 combined, the existing and new resources exceed NICR). Under Section 13 III.13.2.8.2 of the Tariff, the IC Rule is triggered in the FCA if the following two 14 conditions are satisfied: (i) at the start of the auction, the amount of capacity 15 offered from all existing resources is less than the NICR (the difference being 16 defined as "New Capacity Required") and, (ii) the amount of capacity offered 17 from New Generating Capacity Resources and New Demand Resources is less 18 than twice the amount of New Capacity Required.

19

20

21

22

23

Q: WAS THE IC RULE TRIGGERED FOR THE EIGHTH FCA?

A: Yes. For the eighth FCA, there was Insufficient Competition system-wide because both of the conditions described above were in effect. Specifically, there were 32,732 MW of capacity from existing resources and 424 MW of capacity

1		offered from New Generating Capacity Resources and New Demand Resources to
2		meet the NICR of 33,855 MW.
3		
4	Q:	WHAT IS THE RESULTING AUCTION PRICE?
5	A.	Under Section III.13.2.8.2 of the Tariff, if the IC Rule is triggered, existing
6		resources receive the lower of (1) the Capacity Clearing Price, or (2) the
7		administrative price in the Tariff, which for the eighth FCA is \$7.025/kW-month.
8		New resources receive the Capacity Clearing Price. Therefore, because the
9		Capacity Clearing Price was determined to be \$15.00/kW-month in the Maine,
10		Connecticut and Rest-of-Pool Capacity Zones, for the eighth FCA existing
11		resources will be paid the "lower of" administrative price of \$7.025/kW-month
12		and new resources will receive the Capacity Clearing Price of \$15.00/kW-month.
13		
14	Q:	WHAT IS THE CARRY FORWARD RULE?
15	A.	The Carry Forward Rule addresses situations where a large resource met a zonal
16		need, but eliminated any need for new resources in the subsequent auction. The
17		intent of the Carry Forward Rule is to reset the clearing price administratively
18		when new additional capacity would have been needed and consequently would
19		have set the clearing price, but did not because of an excess amount of additional
20		new capacity procured in the prior auction. Under Section III.13.2.7.9.1 of the
21		Tariff, the Carry Forward Rule is triggered in an import-constrained zone if:
22 23 24 25		(a) the sum of New Capacity Required plus the amount of Permanent De- List Bids clearing in the Forward Capacity Auction in the Capacity Zone is less than or equal to zero; (b) there is not Inadequate Supply in the Forward Capacity Auction in the Capacity Zone; and (c) at the Capacity

1 2 3 4 5 6 7 8	0:	Clearing Price, the sum of the amount of New Capacity Required plus the amount of Permanent De-List Bids clearing in the Forward Capacity Auction plus the amount of capacity carried forward due to rationing is greater than zero. The amount of capacity carried forward due to rationing shall equal the amount of capacity above the Local Sourcing Requirement procured in that Capacity Zone in the previous Forward Capacity Auction as a result of the Capacity Rationing Rule.
9	Q:	PLEASE EXPLAIN THE ISO'S CONCLUSION THAT THE CARRY
10		FORWARD RULE WAS TRIGGERED IN NEMA/BOSTON?
11	A.	At the start of the seventh FCA, which was held in February 2013 for the 2016-
12		2017 Capacity Commitment Period, the NEMA/Boston Capacity Zone needed
13		new capacity. The auction in NEMA/Boston closed when Footprint Power, a 674
14		MW New Capacity Generating Resource, submitted an offer to withdraw from the
15		auction at a price of \$14.99/kW-month. Without the capacity from Footprint
16		Power, NEMA/Boston would not have had sufficient capacity to meet its Local
17		Sourcing Requirement. Because Footprint Power elected not to be rationed, all
18		674 MW from Footprint Power cleared in the auction, even though
19		NEMA/Boston only needed about 174 MW from Footprint Power to meet the
20		zone's Local Sourcing Requirement. Therefore, there was approximately 500
21		MW of excess capacity from Footprint Power that carried forward to the eighth
22		FCA.
23		
24	Q:	WHAT WAS THE SUM OF NEW CAPACITY REQUIRED PLUS THE
25		AMOUNT OF PERMAMENT DE-LIST BIDS CLEARED IN
26		NEMA/BOSTON?

1	A.	Because of excess capacity from Footprint Power, there was no New Capacity
2		Required in NEMA/Boston. There were no Permanent De-List Bids submitted or
3		cleared in the NEMA/Boston Capacity Zone for the eighth FCA.
4		
5	Q:	DID THE ISO CONCLUDE THERE WAS INADEQUATE SUPPLY IN
6		NEMA/BOSTON?
7	A.	No. Under Section III.13.2.8.1.1 of the Tariff, Inadequate Supply occurs in an
8		import-constrained zone if at the FCA Starting Price, the amount of new resources
9		offered in the Capacity Zone is less than the amount of New Capacity Required in
10		that Capacity Zone. As explained above, because of the excess capacity from
11		Footprint Power, which is treated as existing, there was no New Capacity
12		Required in NEMA/Boston. Therefore, Inadequate Supply did not occur in
13		NEMA/Boston.
14		
15	Q:	PLEASE EXPLAIN THE ISO'S CONCLUSION AS TO WHETHER THE
16		LAST CONDITION UNDER THE CARRY FORWARD RULE WAS
17		TRIGGERED IN NEMA/BOSTON.
18	A.	The last condition of the Carry Forward Rule requires that at the Capacity
19		Clearing Price, the sum of the amount of New Capacity Required, plus the
20		amount of Permanent De-List Bids clearing in the Forward Capacity Auction plus
21		the amount of capacity carried forward due to rationing be greater than zero.
22		Because of the excess capacity from Footprint Power, the amount of capacity
23		carried forward due to rationing is greater than zero. Consequently, all three

1		conditions under Section III.13.2.7.9.1 of the Tariff were met so that the Carry
2		Forward Rule was triggered in NEMA/Boston for the eighth FCA.
3		
4	Q:	WHY IS THE CAPACITY CLEARING PRICE FOR EXISTING
5		RESOURCES IN NEMA/BOSTON HIGHER THAN THE OTHER
6		CAPACITY ZONES?
7	A.	The ISO's determination is that circumstances in the NEMA/Boston zone
8		triggered the Carry Forward Rule requiring that both existing and new resources
9		be paid the same Capacity Clearing Price. Specifically, Section III.13.2.7.9.2 of
10		the Tariff requires that when the Carry Forward Rule is triggered:
11 12 13 14 15 16 17 18 19 20 21 22 23		the Capacity Clearing Price for the Capacity Zone shall be the lesser of: (1) \$0.01 below the price at which the last New Generating Capacity Resource, New Import Capacity Resource, or New Demand Resource in the Capacity Zone to withdraw withdrew from the Forward Capacity Auction; or (2) the Offer Review Trigger Price for a combustion turbine, as set forth in Section III.A.21.1.1 of the Tariff; provided, however, if there is Insufficient Competition in the Capacity Zone and no capacity offered from New Generating Capacity Resources, New Import Capacity Resources, and New Demand Resources has withdrawn from the Forward Capacity Auction, then the Capacity Clearing Price shall equal the Offer Review Trigger Price for a combustion turbine, as set forth in Section III.A.21.1.1 of the Tariff.
24		The Offer Review Trigger Price for a combustion turbine in Section III.A.21.1.1
25		of the Tariff is \$10.00/kW-month, which is lower than the price at which the last
26		new resource sought to withdraw from the auction. 13 Therefore, in accordance
27		with Section III.13.2.7.9.2 of the Tariff, the Capacity Clearing Price for both new
28		and existing resources in the NEMA/Boston Capacity Zone would be \$10.00/kW-
29		month.

¹³ The last new resource withdrew from the NEMA/Boston Capacity Zone at \$14.99/kW-month.

1	Q:	WHY DID THE ISO CONCLUDE THAT ALL RESOURCES IN
2		NEMA/BOSTON WILL RECEIVE \$15.00/KW-MONTH?
3	A.	NEMA/Boston is an import-constrained zone and Section III.13.2.7.1 of the
4		Tariff establishes the Capacity Clearing Price Floor in an import-constrained
5		Capacity Zone under certain conditions. Specifically, under Section III.13.2.7.1
6		of the Tariff, "[t]he Capacity Clearing Price in an import-constrained zone shall
7		not be lower than the Capacity Clearing Price in the Rest-of-Pool Capacity Zone.'
8		
9		The Capacity Clearing Price of \$10.00/kW-month established by the Carry
10		Forward Rule for all resources, new and existing, in NEMA/Boston is lower than
11		the Capacity Clearing Price in Rest-of-Pool of \$15.00/kW-month. According to
12		Section III.13.2.7.1 of the Tariff:
13 14 15 16 17 18		[i]f after the Forward Capacity Auction is conducted, the Capacity Clearing Price in an import-constrained Capacity Zone is less than the Capacity Clearing Price in the Rest-of-Pool Capacity Zone, all resources clearing in the import-constrained Capacity Zone shall be paid based on the Capacity Clearing Price in the Rest-of-Pool Capacity Zone during the associated Capacity Commitment Period.
20		Therefore, the ISO's determination is that, because the Capacity Clearing Price in
21		Rest-of-Pool is \$15.00/kW-month, pursuant to Section III.13.2.7.1 of the Tariff,
22		all resources (both new and existing) in the NEMA/Boston Capacity Zone will be
23		paid \$15.00/kW-month for the 2017-2018 Capacity Commitment Period.
24		
25	Q:	CONNECTICUT IS ALSO AN IMPORT-CONSTRAINED ZONE, BUT
26		ONLY NEW RESOURCES IN CONNECTICUT ARE RECEIVING
27		\$15.00/KW-MONTH. WHY?

1	A.	The Carry Forward Rule was not triggered in Connecticut. The Capacity Clearing
2		Price in Connecticut of \$15.00/kW-month is the same as Rest-of-Pool. Therefore,
3		Section III.13.2.7.1 is not applicable to the Connecticut Capacity Zone.
4		
5	Q:	MAINE WAS AN EXPORT-CONSTRAINED CAPACITY ZONE. WHY
6		WAS THERE NO PRICE SEPERATION BETWEEN THE MAINE AND
7		REST-OF-POOL CAPACITY ZONES?
8	A.	As explained above, the Maximum Capacity Limit is the maximum amount of
9		capacity that can be procured in an export-constrained zone to meet the ICR. The
10		Maximum Capacity Limit for the Maine export-constrained Load Zone is 3,960
11		MW. 14 This is the amount of capacity resources that can be procured in the
12		eighth FCA from the Maine Capacity Zone. For the eighth FCA, 3,755 MW of
13		capacity from resources cleared in Maine. Because the amount of capacity from
14		the cleared resources in Maine is less than the Maximum Capacity Limit for
15		Maine, there was no price separation in Maine for the eighth FCA.
16		
17	Q:	CAN YOU PROVIDE THE AMOUNT OF MWS OF RESOURCES THAT
18		WILL BE PAID THE UNDER THE IC RULE?
19	A.	Yes. In the Maine, Connecticut and Rest-of-Pool Capacity Zones, there are
20		approximately 1,371 MWs of new resources that will receive the Capacity
21		Clearing Price of \$15.00/kW-month and approximately 24,885 MWs of existing
22		resources that will receive the administrative price of \$7.025/kW-month. Self-

¹⁴ *Id.* at pp. 8-9.

1		supply resources totaling 3,330 MW will not paid through the FCM. Another 357
2		MW of existing resources with multi-year obligations will be paid at rates set in
3		previous auctions, ranging from \$2.52/kW-month to \$3.43/kW-month.
4		
5	Q:	WHAT ABOUT IN THE NEMA/BOSTON CAPACITY ZONE?
6	A.	In the NEMA/Boston Capacity Zone, approximately 3,085 MW of both new and
7		existing resources will be paid the Capacity Clearing Price of \$15.00/kW-month.
8		Footprint Power elected a multi-year commitment in the seventh FCA and will be
9		paid \$14.99/kW-month.
10		
11	Q:	YOU MENTIONED THAT THE AUCTION DID NOT PROCURE
12		SUFFICIENT RESOURCES FOR THE 2017-2018 CAPACITY
13		COMMITMENT PERIOD. WHY IS THERE A SHORTFALL
14		FOLLOWING THE CONCLUSION OF THE AUCTION?
15	A.	The auction concluded at the NICR of 33,855 MW. However, subsequent to the
16		conclusion of the auction, a de-list bid that totaled 142 MW administratively
17		cleared the auction. The de-list bid was priced below the Capacity Clearing Price
18		of \$15.00/kW-month, but above the administrative price of \$7.025/kW-month.
19		Pursuant to Section III.13.2.5.2.7 of the Tariff, when the administrative price is
20		set through the IC Rule and a de-list bid clears that otherwise would not have
21		cleared, the de-listed capacity will not be replaced in the current auction.
22		
22	٥.	WHAT STEDS WILL THE ISO TAKE TO ADDDESS THE SHODTEALL?

1	A.	As mentioned above, the auction procured 142 MWs less than the NICR. The
2		ISO will seek to procure additional resources to make up for this shortfall in the
3		upcoming reconfiguration auctions for the 2017-2018 Capacity Commitment
4		Period.
5		
6	Q:	WILL THERE BE PRORATION?
7	A.	No. Because there was no price floor for eighth FCA, there will be no proration
8		
9	Q:	DOES THIS CONCLUDE YOUR TESTIMONY?
10	A:	Yes.

1	I declare that the foregoing is true and correct.
2	
3	
4	Slowking
5	Stephen J. Rourke
6	
7	
8	
Q	DC(90051393.3

Attachment C

1		UNITED	STATES OF AN	MERICA
2			BEFORE THE	
3		FEDERAL ENER(GY REGULATO	RY COMMISSION
4				
5)	
6	ISO N	New England Inc.)	Docket No. ER14000
7)	A DY A NUDE
8		TESTIMO	NY OF DAVID L	APLANTE
9				
10	Q:	PLEASE STATE YOUR N	NAME, TITLE A	ND BUSINESS ADDRESS.
11	A.	My name is David LaPlante	. I am Vice Presid	ent of Market Monitoring within
12		ISO New England Inc. (the	"ISO"), where I pe	erform the role of the Internal
13		Market Monitor ("IMM").	My business addre	ss is One Sullivan Road, Holyoke,
14		Massachusetts 01040.		
15 16	Q:	PLEASE DESCRIBE YOU	UR WORK EXPI	ERIENCE AND EDUCATIONAL
17		BACKGROUND.		
18	A	A. I have a Bachelor's degree i	n statistics from Pa	rinceton University and a Master's
19		Degree in City and Regiona	l Planning from H	arvard University. I have over 30
20		years experience in the ener	gy and utility indu	stry. I began my career working in
21		the areas of power supply pl	lanning and resour	ce adequacy for the Massachusetts
22		Municipal Wholesale Electr	ric Company and the	ne New England Power Pool
23		("NEPOOL"). I have been	working on the de	regulation of the wholesale electric
24		industry in New England sin	nce 1994. This wo	ork included helping create ISO New
25		England and the developme	nt and implementa	ation of the region's first set of
26		wholesale markets in 1999	Following that. I	was responsible for the market

1		design portion of the Standard Market Design implemented by the ISO in March
2		2003. I was integrally involved in the Forward Capacity Market ("FCM")
3		settlement agreement and in the development of the FCM rules from 2004 to
4		2008. In July 2008, I was promoted to my current position of Vice President of
5		Market Monitoring. This experience has given me extensive knowledge of
6		wholesale electric markets and their regulation by FERC, ISO/RTO operations,
7		and most recently, detailed understanding of the monitoring of electricity markets.
8		
9	Q:	WHAT IS THE PURPOSE OF YOUR TESTIMONY?
10	A.	The purpose of this testimony is to certify (1) that all offers and bids in the FCA
11		that were required by the applicable rules to be reviewed by the IMM were in fact
12		properly reviewed, (2) whether or not the recently conducted eighth Forward
13		Capacity Auction ("FCA") was conducted consistent with the Tariff, and (3)
14		whether or not the prices resulting from the auction were based on a competitive
15		auction. Section III.13.8.2 (b) of the ISO New England Transmission, Markets
16		and Services Tariff (the "Tariff") requires that after each FCA, documentation
17		regarding the competitiveness of the FCA be filed with the Commission.
18		
19	Q:	WERE ALL EXISTING RESOURCE DE-LIST BIDS AND NEW
20		RESOURCE OFFERS PROPERLY REVIEWED BY THE IMM AND
21		QUALIFIED IN ACCORDANCE WITH SECTION III.13.1 PRIOR TO
22		THE FCA CONDUCTED FEBRUARY 3, 2014?
23	A.	Yes. Section III.13.1 of the Tariff sets forth the process for qualifying resources
24		to participate in the FCA. Section III.13.1.2.3.2 of the Tariff requires that the
25		IMM review each Static De-List Bid, Export De-List Bid and Permanent De-List

Bid above \$1.00/kW-month to determine whether the bid is consistent with the
resource's net risk-adjusted going forward costs and opportunity costs.
Additionally, pursuant to Section III.A.21.2 of the Tariff, the IMM reviews
requests submitted by each New Capacity Resource to offer in the FCA below the
Offer Review Trigger Price for the applicable resource type. If the IMM
determines that the requested offer price is inconsistent with the IMM's capacity
price estimate, then the resource's New Resource Offer Floor Price is be set to a
level that is consistent with the capacity price estimate, as determined by the
IMM.

As Vice President of the IMM, I am responsible for overseeing the IMM's review of all of these bids and offers, and I certify that such review was performed in accordance with the provisions of Section III.13.1 of the Tariff. The IMM's determinations with respect to these bids and offers were filed with the Commission in docket number ER14-329-000, and were approved by the Commission on January 16, 2014.

Q: PLEASE EXPLAIN WHY YOU AGREE WITH THE DECISION TO CONDUCT THE FIRST ROUND OF THE AUCTION WITH AN END OF ROUND PRICE OF \$3.00/KW-MONTH.

A. The descending clock auction design is used to maximize the likelihood of a competitive outcome. These measures include releasing only the amount of aggregate supply remaining at the end of each round and releasing no information

Order Accepting Informational Filing, 146 FERC ¶ 61,014 (2014) ("Informational Filing Order").

between rounds about the supply remaining in import constrained zones. In previous auctions, there was robust competition and the supply available significantly exceeded the demand. The robust supply meant that the potential for the exercise of market power by pivotal suppliers was very low. In fact, no pivotal suppliers had sufficient de-lists bids to be able to stop the auction on their own in the first seven auctions. Consequently, the auctioneer was able to use smaller round sizes to maximize price discovery and competition within the auction without the risk of the exercise of market power.

The supply demand balance in FCA 8 differed dramatically from that in the previous auctions. At the start of the auction, the auctioneer knew that there was very little competition to supply the demand for new capacity. If smaller round sizes were used, then it is very likely that several of the suppliers of new capacity would have known that they were pivotal at the end of the first round. The larger size of the first round was intended to reduce the likelihood of this happening.

Q: WAS THE FCA CONDUCTED ON FEBRUARY 3, 2014 FOR THE 2017-2018 CAPACITY COMMITMENT PERIOD CONDUCTED IN ACCORDANCE WITH THE TARIFF?

A.

Yes. The FCA was conducted in accordance with the rules and the resultant auction prices were calculated in accordance with the Tariff. As I discuss below, there were three administrative pricing provisions of the Tariff that were triggered in this FCA. These provisions were appropriately applied to determine the auction prices included in Mr. Rourke's testimony. Mr. Rourke's testimony

describes these provisions and what caused them to be triggered in more detail.

Q: WHICH ADMINISTRATIVE PRICING PROVISIONS WERE TRIGGERED IN FCA 8?

A: The first administrative pricing provision that was triggered system-wide is Insufficient Competition.² The Insufficient Competition provisions were triggered because new capacity was needed to meet the region's Installed Capacity Requirement and there was less than twice the amount of new demand resources and generation resources needed to meet the deficiency in the Installed Capacity Requirement. When the Insufficient Competition rules are triggered, new resources receive the Capacity Clearing Price from the auction and existing resources receive the lower of the Capacity Clearing Price or an administrative price, which was set at \$7.025/kW-month for FCA 8.

The second administrative pricing provision that was triggered was the Carry Forward rule.³ The Carry Forward rule was triggered in the NEMA/Boston Capacity Zone because in FCA 7 the 674 MW Footprint Power Plant cleared in the NEMA/Boston Capacity Zone and resulted in a surplus for the NEMA/Boston Capacity Zone in FCA 8. Under the Capacity Carry Forward rule, the Capacity Clearing Price in the NEMA/Boston zone was set to the cost of a new combustion turbine (\$10.00/kW-month) because the last new generation or new demand resource in the NEMA/Boston zone left the auction at a price greater than

² Section III.13.2.8.2 of the Tariff.

³ Section III.13.2.7.9.1 of the Tariff.

1	\$10.00/kW-month.4

2

3 The third administrative pricing provision that was triggered was the rule that 4 requires the Capacity Clearing Price in an import constrained zone to be no lower 5 than the Capacity Clearing Price in the Rest-of-Pool Capacity Zone.⁵ The 6 Capacity Clearing Price in the Rest-of-Pool Capacity Zone was set at \$15.00/kWmonth in the auction. After the application of the Capacity Carry Forward rule, 7 8 the Capacity Clearing Price in NEMA/Boston was set to \$10.00/kW-month. 9 Since the Capacity Clearing in NEMA/Boston was less than the Capacity Clearing Price in Rest-of-Pool, the NEMA/Boston Capacity Clearing Price was 10 11 set to the \$15.00/kW-month Rest-of-Pool Capacity Clearing Price.

12 13

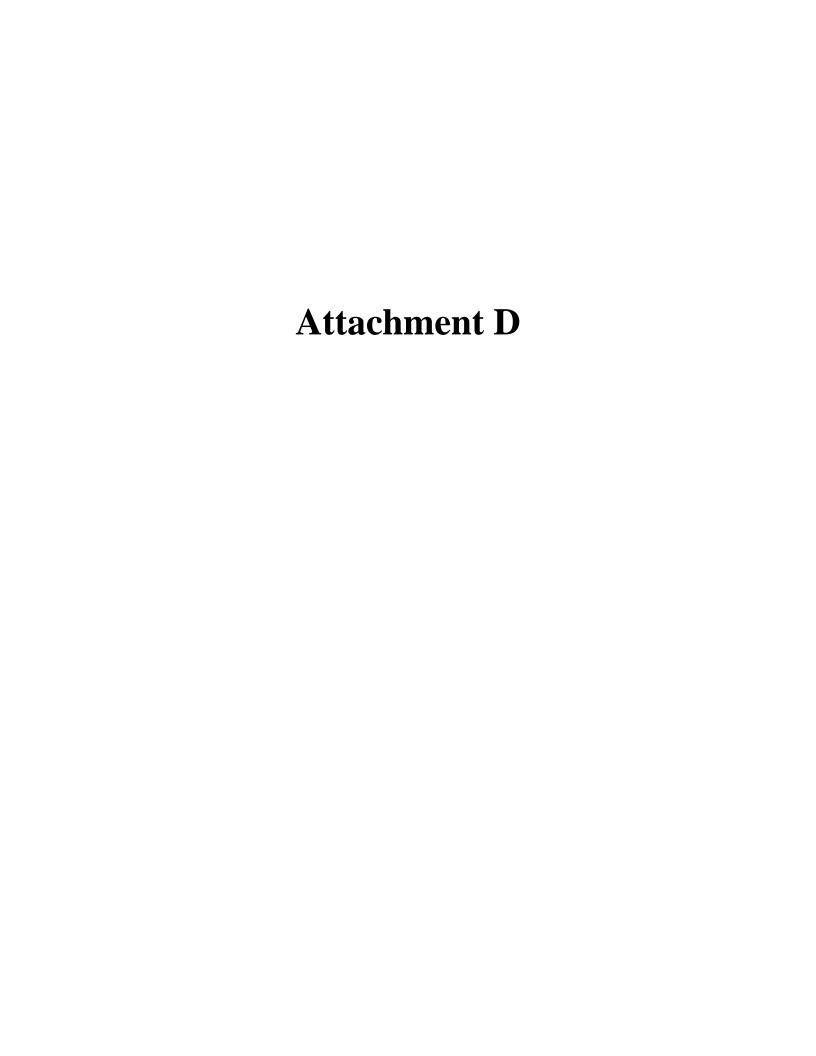
14

15

16

Q: YOU STATED THAT THE AUCTION AND THE RESULTANT PRICES WERE CONDUCTED CONSISTENT WITH THE TARIFF. DOES THIS MEAN THAT THE PRICES WERE THE RESULT OF A COMPETITIVE AUCTION?

17 A. No. There was not sufficient new entry for the auction to be competitive. In a
18 competitive auction, the price will be set by the supplier willing to provide
19 capacity at the lowest price. Such a price represents the lowest cost supplier's
20 costs of providing capacity. Since there was Insufficient Competition, it cannot
21 be concluded that the auction clearing price represents the lowest cost supplier's
22 cost of supplying capacity.


23

⁴ Section III.13.2.7.9.2 of the Tariff.

⁵ Section III.13.2.7.1 of the Tariff.

1	Q:	DO YOU HAVE ANY CONCERNS ABOUT THE RESULTS OF THE
2		APPLICATION OF THE ADMINISTRATIVE PRICING RULES IN THE
3		NEMA/BOSTON CAPACITY ZONE?
4	A.	Yes. As stated earlier, I believe the Tariff was applied properly. However, when
5		there is Insufficient Competition, the application of the third administrative
6		pricing provision discussed above replaces the price set using the Carry Forward
7		rule with the results of a non-competitive auction. Prices that are the result of a
8		non-competitive auction may not be economically efficient because the auction
9		lacked the requisite market discipline.
10		
11	Q:	DOES THIS CONCLUDE YOUR TESTIMONY?
12	A.,	Yes.
13		

1	
2 3	I declare that the foregoing is true and correct.
4	Wood fatlente
5	David LaPlante.
6	
7	
8	

1 2 3 4	UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION		
5 6 7 8	ISO	New England Inc.) Docket No. ER14000).
9 10		TESTIMONY OF LAWRENCE M. AUSUBEL	
11 12	Q.	PLEASE STATE YOUR NAME, TITLE AND BUSINESS ADDRESS.	
13	A.	My name is Lawrence M. Ausubel. I am the Chairman and Founder of Power	
14		Auctions LLC, the company that has helped to design, implement, and administ	er
15		the Forward Capacity Auction ("FCA") for ISO New England Inc. (the "ISO").	
16		I am also the President of Market Design Inc. and a Professor of Economics at t	he
17		University of Maryland. My business address is 1000 Potomac St. NW Suite 20	60,
18		Washington, DC 20007.	
19 20	Q.	PLEASE DESCRIBE YOUR EDUCATIONAL BACKGROUND AN	۷D
21		WORK EXPERIENCE.	
22	A.	I have an A.B. in Mathematics from Princeton University, an M.S. in	
23		Mathematics from Stanford University, an M.L.S. in Legal Studies from Stanford	rd
24		University, and a Ph.D. in Economics from Stanford University.	
25		I am the Chairman of Power Auctions LLC, a provider of auction implementation	on
26		services and software worldwide. I am also the President of Market Design Inc	٠,
27		an economics consultancy that offers services in the design of auction markets.	
28		In recent years, I have played a lead role in the design and implementation of:	

electricity auctions in France, Germany, Spain, Belgium and the US; gas auctions in Germany, France, Hungary and Denmark; the world's first auction for greenhouse gas emission reductions in the UK; and a prototype airport slot auction in the US. I have advised the US Federal Communications Commission, Industry Canada and the Australian Communications and Media Authority on spectrum auctions. I have also advised BOEM (the US Bureau of Ocean Energy Management) and ICANN (the Internet Corporation for Assigned Names and Numbers) on auction design. I designed the 2005 Trinidad and Tobago GSM auction and served as its auction manager. I hold twenty U.S. patents related to auction technology and I have published numerous articles on auction design, bargaining, industrial organization and financial markets. My curriculum vitae, which includes a list of publications and other experience, is attached.

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. The purpose of this testimony is to certify that the recently concluded FCA was conducted in accordance with the relevant filed market rules. Section III.13.8.2 (b) of the ISO New England Transmission, Markets and Services Tariff (the "Tariff") requires that after each FCA, documentation regarding the competitiveness of the FCA be filed with the Federal Energy Regulatory Commission ("Commission"). Section III.13.8.2 (b) states that such documentation may include certification from the auctioneer that the FCA was conducted in accordance with the provisions of Section III.13 of the Tariff. Section III.13.2 of the Tariff provides the rules relating to the mechanics of the

1		FCA. My testimony certifies that the FCA was conducted in accordance with
2		Section III.13.2.
3	Q.	PLEASE DESCRIBE POWER AUCTIONS LLC
4	A.	Power Auctions LLC designs, implements and conducts high-stakes electronic
5		auctions utilizing proprietary software, processes, and other intellectual property.
6		The PowerAuctions software platform designed by Power Auctions LLC has been
7		used to implement over 150 auctions worldwide in the electricity, gas and
8		resource sectors. In the electricity sector, the software platform was used to
9		operate 42 quarterly EDF Generation Capacity Auctions in France. It was also
10		used for the Endesa-Iberdola Virtual Power Plant Auctions in Spain, the
11		Electrabel Virtual Power Plant Auctions in Belgium and the E.ON Virtual Power
12		Plant Auction in Germany. Further, Power Auctions LLC is part of the team that
13		the Federal Communications Commission has assembled to design and implement
14		incentive auctions for the United States, and is the prime contractor to the
15		Governments of Australia and Canada for implementation of spectrum auctions.
16		Power Auctions LLC worked with the ISO to design and implement (on the
17		PowerAuctions platform) the previous FCAs held on February 4-6, 2008;
18		December 8-10, 2008; October 5-6, 2009; August 2-3, 2010; June 6-7, 2011;
19		April 2-3, 2012 and February 4-5, 2013.
20		
21	Q.	WHAT WAS POWER AUCTIONS LLC'S ROLE IN THE FORWARD
22		CAPACITY AUCTION HELD ON FEBRUARY 3, 2014?

1 A. The ISO retained Power Auctions LLC as the independent auction manager
2 ("Auction Manager") for the eighth FCA. As the Auction Manager, Power
3 Auctions LLC worked with the ISO to design and implement the FCA in
4 conformance with the Tariff. By design, the Auction Manager conducted the
5 auction independently, with limited involvement by the ISO. The auction was
6 implemented using the PowerAuctions software platform.

A.

Q. PLEASE DESCRIBE THE MECHANICS OF THE EIGHTH FCA

The auction closed in one round. The determination was made to set the End-of-Round Price for the first round at \$3.00/kW-month due to the limited excess supply in the auction. To begin, there was a limited amount of excess supply, system-wide, at the auction starting price of \$15.82/kW-month. In addition, the first round included new offers that had offer review trigger prices at or near the auction starting price, ISO-submitted de-list bids, an Administrative De-List Bid, and out-of-market capacity from FCA 6 and FCA 7. When combined, those factors further depleted the excess supply, system-wide, at prices just below the auction starting price. Note that the amount of excess supply remaining at the end of each round is revealed to auction participants. As the person at Power Auctions ultimately responsible for setting the price decrements, I was concerned that revealing the excess supply at a price greater than \$3.00/kW-month could result in auction participants making use of the revealed information to submit offers that might not be competitive.

1	Q.	WAS THE FCA, HELD ON FEBRUARY 3, 2014 CONDUCTED IN	
2		ACCORDANCE WITH SECTION III.13.2 OF THE TARIFF?	
3	A.	Yes. In accordance with Section III.13.8.2 (b) of the Tariff, I certify that to the	
4		best of my knowledge, the FCA of February 3, 2014 was conducted in	
5		conformance with the provisions of Section III.13.2 of the Tariff.	
6	Q.	DOES THIS CONCLUDE YOUR TESTIMONY?	
7	A.	Yes.	
8			
Ω			

1	I declare that the foregoing is true and correct.		
2		Laurence Ausubel	
3		Lundence Carrio	
4		Lawrence M. Ausubel	
5			
6			
7			
8	4810_5537_0008 v 1		

Curriculum Vitae

LAWRENCE M. AUSUBEL

Address

Department of Economics
University of Maryland
Tydings Hall, Room 3105
College Park, MD 20742
301.405.3495 TEL 202.318.0863 FAX
ausubel@econ.umd.edu
www.ausubel.com

2744 32nd Street, NW Washington, DC 20008

Power Auctions LLC 1000 Potomac St. NW, Suite 260 Washington, DC 20007-3540 <u>ausubel@powerauctions.com</u> <u>www.powerauctions.com</u>

Personal

Year of Birth: 1959

Place of Birth: New York City

Education

Ph.D. (1984) Stanford University, Economics M.L.S. (1984) Stanford Law School, Legal Studies M.S. (1982) Stanford University, Mathematics A.B. (1980) Princeton University, Mathematics

Honors: Fellow of the Econometric Society

Phi Beta Kappa Sigma Xi

Magna cum laude in mathematics

Stanford University Economics Department, graduate fellowship, 1982

Stanford Law School, fellowship in law and economics, 1983

Fields of Concentration

Microeconomic Theory and Game Theory Auctions and Bargaining Credit Cards, Bankruptcy and Banking Industrial Organization Regulation Law and Economics

Professional Experience

Professor of Economics, University of Maryland (August 1992 – present).

Chairman and Founder, Power Auctions LLC (2004 – present).

A technology provider of auction software, auction design and implementation services. The PowerAuctionsTM software platform has been used in more than 150 high-stakes auctions, with transaction value in the tens of billions of dollars.

President, Market Design Inc. (2003 – present).

A consultancy of leading economists and game theorists (Peter Cramton, R. Preston McAfee, Paul Milgrom, Robert Wilson, et al) that works with governments and companies worldwide to design and implement state-of-the-art auctions and markets.

Assistant Professor of Managerial Economics and Decision Sciences, Kellogg School, Northwestern University (September 1984 – August 1992).

Visiting Assistant Professor, New York University (January 1990 – May 1990).

Recent Consulting Experience

Provided expert bidding advise to bidders in more than a dozen large spectrum auctions, including Bharti Airtel in India's 900/1800 MHz auction, Orange in Slovakia's Multi-Band spectrum auction, Three (Hutchison) in the UK 800 MHz and 2.6 GHz auction, Eircom in Ireland's 800/900/1800 MHz auction, Aircel in India's 3G/BWA auctions, Spain's Telefónica in the UK, German, Italian and Austrian UMTS/3G spectrum auctions, Ericsson in the US PCS spectrum auctions, MTN in the Nigerian spectrum auctions, MCI in the US Direct Broadcast Satellite auction, US Airwaves in the US C-Block Auction, Mobile Media in the US Narrowband Auction, and other confidential clients.

- Advisor to the Federal Communications Commission (US) on the design and implementation of incentive auctions, 2011 present.
- Advisor to the Canadian government (Industry Canada) on the design and implementation of the 700 MHz and 2.5 GHz spectrum auctions, 2008 present.
- Advisor to the Australian government (ACMA) on the design and implementation of the Australian Digital Dividend auction, 2011 –2013.
- Provided auction design advice to the IDA Singapore on their Auction of Public Cellular Mobile Telecommunication Services Spectrum Rights, 2007 2008.

Design and implementation of the Trinidad and Tobago GSM auction, 2005.

- Design and implementation of the Forward Capacity Auction for ISO-New England (2007 present).
- Design and implementation of the quarterly Electricité de France generation capacity auctions (2001 2011) and Long-Term Contract auctions (2008 2009).
- Design and implementation of the quarterly Spanish Virtual Power Plant (VPP) auctions (2007 present).
- Design and implementation of the E.ON VPP auction in Germany (2007).
- Design and implementation of auctions for new gTLDs for ICANN (Internet Corporation for Assigned Names and Numbers (2008 present).
- Design and implementation of rough diamond auctions for Okavango Diamond Company, Botswana (2013 present).
- Design and implementation of rough diamond auctions for BHP Billiton/Dominion Diamonds (2007 present).
- Design and implementation of the annual E.ON Földgáz Trading gas release programme auction in Hungary (2006 2013).
- Design and implementation of the annual Danish Oil and Natural Gas (DONG Energy) gas release programme auction (2006 2011).
- Design and implementation of the annual E.ON Ruhrgas gas release programme auction in Germany (2003 2008, 2010).
- Design and implementation of the Gaz de France gas storage auction (2006).
- Design and implementation of the Gaz de France gas release programme auction (2004).
- Design and implementation of the Total gas release programme auction (2004).
- Design and implementation of the UK Emissions Trading Scheme auction to procure greenhouse gas emission reductions for the UK Government (2002).
- Design and implementation of a demonstration auction of landing and takeoff slots for LaGuardia Airport, for the US Federal Aviation Administration (2005).

Teaching

Econ 456	Law and Economics (Undergraduate; Maryland)
Econ 603	Microeconomic Analysis (Ph.D.; Maryland)
Econ 661	Industrial Organization (Ph.D.; Maryland)
Econ 704	Game Theory, Bargaining and Auctions (Ph.D.; Maryland)
Mngrl Econ D30	Intermediate Microeconomics (M.B.A.; Northwestern)

Publications

- "Market Design and the Evolution of the Combinatorial Clock Auction" (with Oleg V. Baranov), *American Economic Review: Papers & Proceedings*, forthcoming, May 2014.
- "Sequential Kidney Exchange" (with Thayer Morrill), *American Economic Journal: Microeconomics*, forthcoming, 2014.
- "Common-Value Auctions with Liquidity Needs: An Experimental Test of a Troubled Assets Reverse Auction" (with Peter Cramton, Emel Filiz-Ozbay, Nathaniel Higgins, Erkut Ozbay and Andrew Stocking), *Handbook of Market Design*, Oxford University Press, forthcoming July 2013.
- "Non-Judicial Debt Collection and the Consumer's Choice among Repayment, Bankruptcy and Informal Bankruptcy" (with Amanda E. Dawsey and Richard M. Hynes), *American Bankruptcy Law Journal*, Vol. 87, pp. 1-26 [lead article], March 2013.
- "Virtual Power Plant Auctions" (with Peter Cramton), *Utilities Policy*, Vol. 18, No. 4, pp. 201-208, December 2010.
- "Using Forward Markets to Improve Electricity Market Design" (with Peter Cramton), *Utilities Policy*, Vol. 18, No. 4, pp. 195-200, December 2010.
- "An Efficient Dynamic Auction for Heterogeneous Commodities," *American Economic Review*, Vol. 96, No. 3, pp. 602-629, June 2006.
- "An Efficient Ascending-Bid Auction for Multiple Objects," *American Economic Review*, Vol. 94, No. 5, pp. 1452-1475, December 2004.
- "Dynamic Auctions in Procurement" (with Peter Cramton), Chapter 9 of *Handbook of Procurement* (N. Dimitri, G. Piga, and G. Spagnolo, eds.), pp. 220-245, Cambridge: Cambridge University Press, 2006.
- "The Lovely but Lonely Vickrey Auction" (with Paul Milgrom), Chapter 1 of *Combinatorial Auctions* (P. Cramton, Y. Shoham, and R. Steinberg, eds.), pp. 17-40, Cambridge: MIT Press, 2006.
- "Ascending Proxy Auctions" (with Paul Milgrom), Chapter 3 of *Combinatorial Auctions* (P. Cramton, Y. Shoham, and R. Steinberg, eds.), pp. 79-98, Cambridge: MIT Press, 2006.
- "The Clock-Proxy Auction: A Practical Combinatorial Auction Design" (with Peter Cramton and Paul Milgrom), Chapter 5 of *Combinatorial Auctions* (P. Cramton, Y. Shoham, and R. Steinberg, eds.), pp. 115-138, Cambridge: MIT Press, 2006.

- "Auctioning Many Divisible Goods" (with Peter C. Cramton), *Journal of the European Economics Association*, Vol. 2, Nos. 2-3, pp. 480-493, April-May 2004.
- "Vickrey Auctions with Reserve Pricing" (with Peter C. Cramton), *Economic Theory*, 23, pp. 493-505, April 2004. Reprinted in Charalambos Aliprantis, et al. (eds.), *Assets, Beliefs, and Equilibria in Economic Dynamics*, Berlin: Springer-Verlag, 355-368, 2003.
- "Auction Theory for the New Economy," Chapter 6 of *New Economy Handbook* (D. Jones, ed.), San Diego: Academic Press, 2003.
- "Ascending Auctions with Package Bidding" (with Paul Milgrom), Frontiers of Theoretical Economics, Vol. 1, No. 1, Article 1, August 2002. http://www.bepress.com/bejte/frontiers/vol1/iss1/art1
- "Bargaining with Incomplete Information" (with Peter Cramton and Raymond Deneckere), Chapter 50 of *Handbook of Game Theory* (R. Aumann and S. Hart, eds.), Vol. 3, Amsterdam: Elsevier Science B.V., 2002.
- "Package Bidding: Vickrey vs. Ascending Auctions" (with Paul Milgrom), *Revue Economique*, Vol. 53, No. 3, pp. 391-402, May 2002.
- "Implications of Auction Theory for New Issues Markets," *Brookings-Wharton Papers on Financial Services*, Vol. 5, pp. 313-343, 2002.
- "Synergies in Wireless Telephony: Evidence from the Broadband PCS Auctions" (with Peter Cramton, R. Preston McAfee, and John McMillan), *Journal of Economics and Management Strategy*, Vol. 6, No. 3, Fall 1997, pp. 497-527.
- "Credit Card Defaults, Credit Card Profits, and Bankruptcy," *American Bankruptcy Law Journal*, Vol. 71, Spring 1997, pp. 249-270; recipient of the Editor's Prize for the best paper in the American Bankruptcy Law Journal, 1997.
- "Efficient Sequential Bargaining" (with R. Deneckere), *Review of Economic Studies*, Vol. 60, No. 2, April 1993, pp. 435-461.
- "A Generalized Theorem of the Maximum" (with R. Deneckere), *Economic Theory*, Vol. 3, No. 1, January 1993, pp. 99-107.
- "Durable Goods Monopoly with Incomplete Information" (with R. Deneckere), supercedes "Stationary Sequential Equilibria in Bargaining with Two-Sided Incomplete Information," *Review of Economic Studies*, Vol. 59, No. 4, October 1992, pp. 795-812.
- "Bargaining and the Right to Remain Silent" (with R. Deneckere), *Econometrica*, Vol. 60, No. 3, May 1992, pp. 597-625.
- "The Failure of Competition in the Credit Card Market," *American Economic Review*, Vol. 81, No. 1, March 1991, pp. 50-81; reprinted as Chapter 21 in *Advances in Behavioral Finance* (D. Thaler, ed.), Russell Sage Foundation, 1993.

- "Insider Trading in a Rational Expectations Economy," *American Economic Review*, Vol. 80, No. 5, December 1990, pp. 1022-1041.
- "Partially-Revealing Rational Expectations Equilibrium in a Competitive Economy," *Journal of Economic Theory*, Vol. 50, No. 1, February 1990, pp. 93-126.
- "A Direct Mechanism Characterization of Sequential Bargaining with One-Sided Incomplete Information" (with R. Deneckere), *Journal of Economic Theory*, Vol. 48, No. 1, June 1989, pp. 18-46; reprinted as Chapter 15 in *Bargaining with Incomplete Information* (P. Linhart, R. Radner, and M. Satterthwaite, eds.), Academic Press, 1992.
- "Reputation in Bargaining and Durable Goods Monopoly" (with R. Deneckere), *Econometrica*, Vol. 57, No. 3, May 1989, pp. 511-531; reprinted as Chapter 13 in *Bargaining with Incomplete Information* (P. Linhart, R. Radner, and M. Satterthwaite, eds.), Academic Press, 1992.
- "One is Almost Enough for Monopoly" (with R. Deneckere), *Rand Journal of Economics*, Vol. 18, No. 2, Summer 1987, pp. 255-274.

Patents

- "System and Method for a Dynamic Auction with Package Bidding" (with Paul Milgrom), U.S. Patent Number 8,566,211, issued October 22, 2013.
- "System and Method for an Efficient Dynamic Multi-Unit Auction," U.S. Patent Number 8,447,662, issued May 21, 2013.
- "System and Method for a Hybrid Clock and Proxy Auction" (with Peter Cramton and Paul Milgrom), U.S. Patent Number 8,335,738, issued December 18, 2012.
- "System and Method for a Hybrid Clock and Proxy Auction" (with Peter Cramton and Paul Milgrom), U.S. Patent Number 8,224,743, issued July 17, 2012.
- "System and Method for the Efficient Clearing of Spectrum Encumbrances" (with Peter Cramton and Paul Milgrom), U.S. Patent Number 8,145,555, issued March 27, 2012.
- "Computer Implemented Methods and Apparatus for Auctions," U.S. Patent Number 8,065,224, issued November 22, 2011.
- "Ascending Bid Auction for Multiple Objects," U.S. Patent Number 7,966,247, issued June 21, 2011.
- "System and Method for an Auction of Multiple Types of Items" (with Peter Cramton and Wynne P. Jones), U.S. Patent Number 7,899,734, issued March 1, 2011.
- "System and Method for an Efficient Dynamic Multi-Unit Auction," U.S. Patent Number 7,870,050, issued January 11, 2011.

- "Computer Implemented Methods and Apparatus for Auctions," U.S. Patent Number 7,774,264, issued August 10, 2010.
- "System and Method for a Hybrid Clock and Proxy Auction" (with Peter Cramton and Paul Milgrom), U.S. Patent Number 7,729,975, issued June 1, 2010.
- "System and Method for an Efficient Dynamic Multi-Unit Auction," U.S. Patent Number 7,467,111, issued December 16, 2008.
- "System and Method for an Efficient Dynamic Multi-Unit Auction," U.S. Patent Number 7,343,342, issued March 11, 2008.
- "Ascending Bid Auction for Multiple Objects," U.S. Patent Number 7,337,139, issued February 26, 2008.
- "Computer Implemented Methods and Apparatus for Auctions," U.S. Patent Number 7,249,027, issued July 24, 2007.
- "System and Method for an Efficient Dynamic Multi-Unit Auction," U.S. Patent Number 7,165,046, issued January 16, 2007.
- "System and Method for an Efficient Dynamic Multi-Unit Auction," U.S. Patent Number 7,062,461, issued June 13, 2006.
- "System and Method for an Efficient Dynamic Auction for Multiple Objects," U.S. Patent Number 6,026,383, issued February 15, 2000.
- "Computer Implemented Methods and Apparatus for Auctions," U.S. Patent Number 6,021,398, issued February 1, 2000.
- "Computer Implemented Methods and Apparatus for Auctions," U.S. Patent Number 5,905,975, issued May 18, 1999.

Book Reviews and Encyclopedia Entries

- "Auction Theory," *New Palgrave Dictionary of Economics*, Second Edition, Steven N. Durlauf and Lawrence E. Blume, eds., London: Macmillan, 2008.
- "Credit Cards," McGraw-Hill Encyclopedia of Economics, McGraw-Hill, 1994.
- "Book Review: The Credit Card Industry, by Lewis Mandell," *Journal of Economic Literature*, Vol. 30, No. 3, September 1992, pp. 1517-18.
- "Credit Cards," New Palgrave Dictionary of Money and Finance, Stockton Press, 1992.

Working Papers

- "The Combinatorial Clock Auction, Revealed Preference and Iterative Pricing," (with Oleg V. Baranov), February 2014.
- "Core-Selecting Auctions with Incomplete Information" (with Oleg V. Baranov), working paper, University of Maryland, August 2010.
- "Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt" (with Oleg V. Baranov and Amanda E. Dawsey), mimeo, University of Maryland, June 2010.
- "A Troubled Asset Reverse Auction" (with Peter Cramton), working paper, University of Maryland, October 2008.
- "Time Inconsistency in the Credit Card Market" (with Haiyan Shui), mimeo, University of Maryland, January 2005.
- "Informal Bankruptcy" (with Amanda E. Dawsey), mimeo, University of Maryland, April 2004.
- "Adverse Selection in the Credit Card Market," mimeo, University of Maryland, June 1999.
- "The Credit Card Market, Revisited," mimeo, University of Maryland, July 1995.
- "Walrasian Tâtonnement for Discrete Goods," mimeo, University of Maryland, July 2005.
- "Demand Reduction and Inefficiency in Multi-Unit Auctions" (with Peter Cramton), Working Paper No. 96-07, University of Maryland, July 2002.
- "Bidder Participation and Information in Currency Auctions" (with Rafael Romeu), Working Paper WP/05/157, International Monetary Fund, 2005.
- "A Mechanism Generalizing the Vickrey Auction," mimeo, University of Maryland, September 1999.
- "The Ascending Auction Paradox" (with Jesse Schwartz), mimeo, University of Maryland, July 1999.
- "The Optimality of Being Efficient" (with Peter Cramton), mimeo, University of Maryland, June 1999.
- "Sequential Recontracting Under Incomplete Information" (with Arijit Sen), mimeo, University of Maryland, June 1995.
- "Separation and Delay in Bargaining" (with Raymond Deneckere), mimeo, University of Maryland, April 1994.

- "A Model of Managerial Discretion and Corporate Takeovers," mimeo, University of Maryland, March 1993.
- "Rigidity and Asymmetric Adjustment of Bank Interest Rates," mimeo, University of Maryland, August 1992.
- "Oligopoly When Market Share Matters," mimeo, Stanford University, May 1984.
- "Partially-Revealing Equilibria," Stanford University, Department of Economics, August 1984. Dissertation committee: Mordecai Kurz (principal advisor); Peter J. Hammond; Kenneth J. Arrow.

Works in Progress

"The Hungarian Auction" (with T. Morrill)

"Bargaining and Forward Induction" (with R. Deneckere)

Op-Eds

- "Making Sense of the Aggregator Bank" (with Peter Cramton), *Economists' Voice*, Vol. 6, Issue 3, Article 2, February 2009.
- "No Substitute for the 'P'-Word in Financial Rescue" (with Peter Cramton), *Economists' Voice*, Vol. 6, Issue 2, Article 2, February 2009.
- "Auction Design Critical for Rescue Plan" (with Peter Cramton), *Economists' Voice*, Vol. 5, Issue 5, Article 5, September 2008.

Research Grants

- Principal Investigator, "Common-Value Auctions with Liquidity Needs" (with P. Cramton, E. Filiz-Ozbay and E. Ozbay), National Science Foundation Grant SES-09-24773, September 1, 2009 August 31, 2013.
- Principal Investigator, "Dynamic Matching Mechanisms" (with P. Cramton), National Science Foundation Grant SES-05-31254, August 15, 2005 July 31, 2008.
- Co-Principal Investigator, "Slot Auctions for U.S. Airports" (with M. Ball, P. Cramton and D. Lovell), Federal Aviation Administration, September 1, 2004 August 31, 2005.
- Co-Principal Investigator, "Rapid Response Electronic Markets for Time-Sensitive Goods" (with G. Anandalingam, P. Cramton, H. Lucas, M. Ball and V. Subrahmanian), National Science Foundation Grant IIS-02-05489, Aug 1, 2002 July 31, 2005.
- Principal Investigator, "Multiple Item Auctions" (with P. Cramton), National Science

- Foundation Grant SES-01-12906, July 15, 2001 June 30, 2004.
- Principal Investigator, "Auctions for Multiple Items" (with P. Cramton), National Science Foundation Grant SBR-97-31025, April 1, 1998 March 31, 2001.
- Co-Principal Investigator, "Auctions and Infrastructure Conference" (with P. Cramton), National Science Foundation, April 1, 1998 March 31, 1999.
- Principal Investigator, "Bargaining Power, Sequential Recontracting, and the Principal-Agent Problem" (with A. Sen), National Science Foundation Grant SBR-94-10545, October 15, 1994 September 30, 1997.
- Principal Investigator, "Insider Trading and Economic Efficiency," The Lynde and Harry Bradley Foundation, May 15, 1989 May 14, 1992.
- Principal Investigator, "Bargaining with One- and Two-Sided Incomplete Information" (with R. Deneckere), National Science Foundation Grant SES-86-19012, June 1, 1987 May 31, 1989.
- Principal Investigator, "Information Transmission in Bargaining and Markets" (with R. Deneckere), National Science Foundation Grant IST-86-09129, July 1, 1986 June 30, 1987.

Conference Presentations

- "On Generalizing the English Auction," Econometric Society Winter Meetings, Chicago, January 1998.
- "The Optimality of Being Efficient," Maryland Auction Conference, Wye River, May 1998.
- "Adverse Selection in the Credit Card Market," Western Finance Association, Monterey, June 1998.
- "The Optimality of Being Efficient," Econometric Society Summer Meetings, Montreal, June 1998.
- "Bargaining and Forward Induction," Northwestern Summer Microeconomics Conference, Evanston, IL, July 1998.
- "Predicting Personal Bankruptcies," National Conference of Bankruptcy Judges, Dallas, October 1998.
- "Adverse Selection in the Credit Card Market," NBER Behavioral Macroeconomics Conference, Boston, December 1998.
- "The Ascending Auction Paradox," Econometric Society Summer Meetings, Madison, June 1999.

- "Adverse Selection in the Credit Card Market," Econometric Society Summer Meetings, Madison, June 1999.
- "Predicting Personal Bankruptcies," Meeting of the National Association of Chapter Thirteen Trustees, New York, July 1999.
- "The Ascending Auction Paradox," Southeast Economic Theory Conference, Washington DC, November 1999.
- "Adverse Selection in the Credit Card Market," Utah Winter Finance Conference, Salt Lake City, February 2000.
- "An Efficient Dynamic Auction for Heterogeneous Commodities," Conference on Auctions and Market Structure, Heidelberg, Germany, July 2000.
- "An Efficient Dynamic Auction for Heterogeneous Commodities," Conference on Multiunit Auctions, Stony Brook, NY, July 2000.
- "A Mechanism Generalizing the Vickrey Auction," Econometric Society World Congress, Seattle, August 2000.
- "Auctions for Financial E-Commerce," New York Federal Reserve Bank Conference on Financial E-Commerce, New York, February 2001.
- "An Efficient Dynamic Auction for Heterogeneous Commodities," NSF General Equilibrium Conference, Providence, RI, April 2001.
- "An Efficient Dynamic Auction for Heterogeneous Commodities," NSF/NBER Decentralization Conference, Evanston, IL, April 2001.
- "Informal Bankruptcy," Association of American Law Schools Workshop on Bankruptcy, St. Louis, MO, May 2001.
- "An Efficient Dynamic Auction for Heterogeneous Commodities," Econometric Society Summer Meetings, College Park, MD, June 2001.
- "Ascending Auctions with Package Bidding," FCC, SIEPR and NSF Conference on Combinatorial Auctions, Wye River, MD, October 2001.
- "The Electricité de France Generation Capacity Auctions," CORE-ECARES-LEA Workshop on Auctions, Brussels, Belgium, November 2001.
- "Informal Bankruptcy," Utah Winter Finance Conference, Salt Lake City, February 2002.
- "Defictionalizing the Walrasian Auctioneer," Conference on Market Design in Honor of Robert Wilson, Stanford, CA, May 2002.
- "Adverse Selection in the Credit Card Market," Conference on the Economics of Payment Networks, Toulouse, France, June 2002.

- "Ascending Auctions with Package Bidding," Econometric Society Summer Meetings, Los Angeles, June 2002.
- "An Efficient Dynamic Auction for Heterogeneous Commodities," Conference in Honor of Mordecai Kurz, Stanford, CA, August 2002.
- "Adverse Selection in the Credit Card Market," Conference on Credit, Trust and Calculation, San Diego, November 2002.
- "Package Bidding for Spectrum Auctions," American Economic Association Meetings, Washington, DC, January 2003.
- "Auctioning Many Divisible Goods," invited session, European Economic Association Meetings, Stockholm, August 2003.
- "Spectrum Auctions with Package Bidding," TPRC Research Conference on Communication, Information and Internet Policy, Arlington, VA, September 2003.
- "Defictionalizing the Walrasian Auctioneer," invited lecture, Conference on Auctions and Market Design: Theory, Evidence and Applications, Fondazione Eni Enrico Mattei, Milan, September 2003.
- "Clock Auctions, Proxy Auctions, and Possible Hybrids," Workshop on Auction Theory and Practice, Pittsburgh, PA, November 2003.
- "Clock Auctions, Proxy Auctions, and Possible Hybrids," FCC Combinatorial Bidding Conference, Wye River, MD, November 2003.
- "Time Inconsistency in the Credit Card Market," Utah Winter Finance Conference, Salt Lake City, February 2004.
- "The Clock-Proxy Auction: A Practical Combinatorial Auction Design," Conference on Auctions and Market Design: Theory, Evidence and Applications, Consip, Rome, Italy, September 2004.
- "Bidder Participation and Information in Currency Auctions," Conference on Auctions and Market Design: Theory, Evidence and Applications, Consip, Rome, Italy, September 2004.
- "The Clock-Proxy Auction: A Practical Combinatorial Auction Design," Market Design Conference, Stanford University, December 2004.
- "Dynamic Matching Mechanisms," Econometric Society World Congress, London, August 2005.
- "The Clock-Proxy Auction, with Recent Applications," SISL Workshop, Caltech, October 2005.

- "Dynamic Matching Mechanisms," Conference on Matching and Two-Sided Markets, University of Bonn, May 2006.
- "The Hungarian Auction," DIMACS Workshop on Auctions with Transaction Costs, Rutgers University, March 2007.
- "The Hungarian Auction," PSE Lecture at the Paris School of Economics, June 2007.
- "Time Inconsistency in the Credit Card Market," John M. Olin Conference on Law and Economics of Consumer Credit, University of Virginia, February 2008.
- "The Hungarian Auction," 6th Annual International Industrial Organization Conference, Arlington, VA, May 2008.
- "The Hungarian Auction," Frontiers of Microeconomic Theory and Policy, Symposium in Honour of Ray Rees, University of Munich, July 2008.
- "Common-Value Auctions with Liquidity Needs: An Experimental Test of a Troubled Assets Reverse Auction," 2009 CAPCP Conference on Auctions and Procurement, Penn State University, March 2009.
- "Market Design for Troubled Assets," NBER Workshop on Market Design, Cambridge, MA, May 2009.
- "Market Design for Troubled Assets," Madrid Summer Workshop on Economic Theory, Universidad Carlos III de Madrid, June 2009.
- "Virtual Power Plant Auctions," (with Peter Cramton), Workshop: Designing Electricity Auctions, Research Institute of Industrial Economics, Stockholm, Sweden, September 2009.
- "Using Forward Markets to Improve Electricity Market Design," (with Peter Cramton), Workshop: Designing Electricity Auctions, Research Institute of Industrial Economics, Stockholm, Sweden, September 2009.
- "Virtual Power Plant Auctions," (with Peter Cramton), Market Design 2009 Conference, Stockholm, Sweden, September 2009.
- "Using Forward Markets to Improve Electricity Market Design," (with Peter Cramton), Market Design 2009 Conference, Stockholm, Sweden, September 2009.
- "Auctions with Multiple Objects," 2009 Erwin Plein Nemmers Prize in Economics, Conference in Honor of Paul Milgrom, Northwestern University, November 2009.
- "Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt" (with Oleg V. Baranov and Amanda E. Dawsey), Credit, Default and Bankruptcy Conference, University of California Santa Barbara, June 2010.

- "Core-Selecting Auctions with Incomplete Information" (with Oleg V. Baranov), World Congress of the Econometric Society, Shanghai, China, August 2010.
- "Core-Selecting Auctions with Incomplete Information" (with Oleg V. Baranov), NBER Workshop on Market Design, Cambridge, MA, October 2010.
- "Core-Selecting Auctions with Incomplete Information" (with Oleg V. Baranov), NSF/CEME Decentralization Conference, Ohio State University, April 2011
- "Penalty Interest Rates, Universal Default, and the Common Pool Problem of Credit Card Debt" (with Oleg V. Baranov and Amanda E. Dawsey), Centre for Financial Analysis & Policy Conference on Consumer Credit and Bankruptcy, University of Cambridge, UK, April 2011.
- "Core-Selecting Auctions with Incomplete Information" (with Oleg V. Baranov), Center for the Study of Auctions, Procurements and Competition Policy Conference, Penn State University, April 2011.
- "Design Issues for Combinatorial Clock Auctions," (with Oleg V. Baranov), Annual Meeting of the Institute for Operations Research and the Management Sciences (INFORMS), Phoenix AZ, October 2012.
- "An Enhanced Combinatorial Clock Auction," (with Oleg V. Baranov), SIEPR Conference on the FCC Incentive Auctions, Stanford University, February 2013.
- "Enhancing the Combinatorial Clock Auction," (with Oleg V. Baranov), Ofcom Conference, Combinatorial Auctions for Spectrum, London School of Economics, September 2013.
- "The Combinatorial Clock Auction, Revealed Preference and Iterative Pricing," (with Oleg V. Baranov), NBER Workshop on Market Design, Stanford University, October 2013.
- "Market Design and the Evolution of the Combinatorial Clock Auction," (with Oleg V. Baranov), American Economic Association meetings, Philadelphia, January 2014.

Professional Service

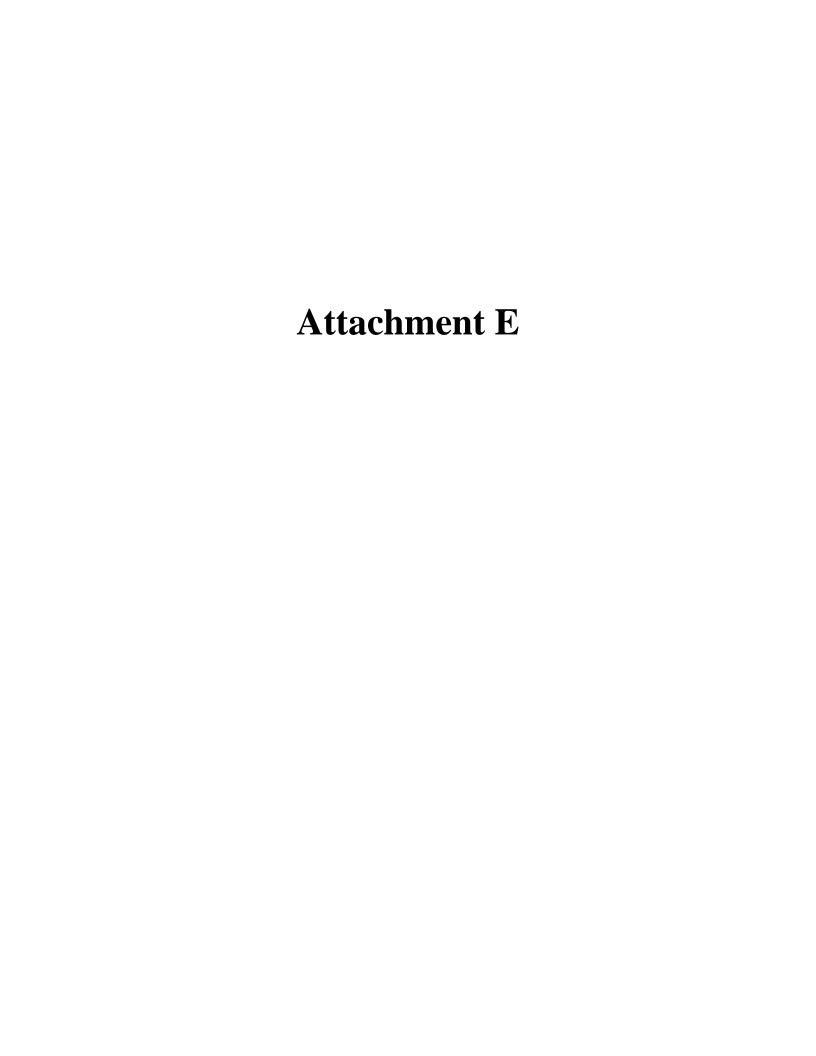
- Member of working group for the design and implementation of incentive auctions for the US Federal Communications Commission, 2011–present.
- Advisor to Industry Canada and the Australian Communications and Media Authority for the design and implementation of 700 MHz and 2.5 GHz spectrum auctions, 2011–present.
- Congressional Briefing on "How Fundamental Economic Research Improves People's Lives," Rayburn House Office Building, March 2010.
- Testified before the Committee on Banking, Housing and Urban Affairs of the US Senate, Hearing on "Modernizing Consumer Protection in the Financial Regulatory System: Strengthening Credit Card Protections," February 12, 2009.

Testified before the Subcommittee on Financial Institutions and Consumer Credit of the US House of Representatives, Hearing on "The Credit Cardholders' Bill of Rights: Providing New Protections for Consumers," March 13, 2008.

Member, National Science Foundation Economics Panel, 2004–2005.

Associate Editor, Berkeley Electronic Journals of Theoretical Economics, 2004-present.

Guest Associate Editor, Management Science, issue on Electronic Auctions, 2003.


- Program Chair of the 2001 North American Summer Meeting of the Econometric Society (with Peter Cramton), University of Maryland, June 21–24, 2001.
- Organized Maryland Auction Conference (with Peter Cramton), Wye River Conference Center, May 1998, sponsored by the National Science Foundation, the World Bank, and the University of Maryland.
- Spoke at a Forum on Bankruptcy of the Financial Services Committee of the United States House of Representatives, February 28, 2001.
- Testified before the Subcommittee on Commercial and Administrative Law of the United States House of Representatives, Hearing on the Consumer Bankruptcy Issues in the Bankruptcy Reform Act of 1998, March 10, 1998.
- Testified before the Subcommittee on Financial Institutions and Regulatory Relief of the United States Senate, Hearing on Bankruptcy Reform, February 11, 1998.
- Program Committee of the North American Summer Meeting of the Econometric Society, UCLA, June 2002, and University of Pennsylvania, June 1991.

Testified before the National Bankruptcy Review Commission, January 1997.

Referee for: American Economic Review, Econometrica, European Economic Review, Games and Economic Behavior, International Journal of Game Theory, International Journal of Industrial Organization, Journal of Banking and Finance, Journal of Business, Journal of Economic Theory, Journal of Financial Intermediation, Journal of Political Economy, Quarterly Journal of Economics, Rand Journal of Economics, Review of Economic Studies, and the National Science Foundation.

Professional Organizations

American Economic Association Econometric Society

New England Governors, State Utility Regulators and Related Agencies

Maine

The Honorable Paul LePage One State House Station Office of the Governor Augusta, ME 04333-0001 Kathleen.Newman@maine.gov

Maine Public Utilities Commission 18 State House Station Augusta, ME 04333-0018 Maine.puc@maine.gov

New Hampshire

The Honorable Maggie Hassan Office of the Governor 26 Capital Street Concord NH 03301 Molly.Connors@nh.gov Meredith.Hatfield@nh.gov

New Hampshire Public Utilities Commission
21 South Fruit Street, Ste. 10
Concord, NH 03301-2429
steve.mullen@puc.nh.gov
tom.frantz@puc.nh.gov
george.mccluskey@puc.nh.gov
F.Ross@puc.nh.gov
David.goyette@puc.nh.gov
RegionalEnergy@puc.nh.gov

Vermont

The Honorable Peter Shumlin Office of the Governor 109 State Street, Pavilion Montpelier, VT 05609 elizabeth.miller@state.vt.us

Jeb.Spaulding@state.vt.us

Vermont Public Service Board 112 State Street Montpelier, VT 05620-2701 mary-jo.krolewski@state.vt.us Vermont Department of Public Service 112 State Street, Drawer 20 Montpelier, VT 05620-2601 bill.jordan@state.vt.us chris.recchia@state.vt.us Ed.McNamara@state.vt.us

Massachusetts

The Honorable Deval Patrick Office of the Governor Rm. 360 State House Boston, MA 02133

Massachusetts Attorney General Office One Ashburton Place Boston, MA 02108 Jesse.reyes@state.ma.us

Massachusetts Department of Public Utilities One South Station Boston, MA 02110 Thomas.Bessette@state.ma.us

Rhode Island

The Honorable Lincoln Chafee Office of the Governor State House Room 115 Providence, RI 02903 Marion.Gold@energy.ri.gov CKearns@doa.ri.gov Danny.Musher@energy.ri.gov

Rhode Island Public Utilities Commission 89 Jefferson Blvd.
Warwick, RI 02888
nicholas.ucci@energy.ri.gov
paul.roberti@puc.ri.gov

New England Governors, State Utility Regulators and Related Agencies

Connecticut

The Honorable Dannel P. Malloy Office of the Governor State Capitol 210 Capitol Ave. Hartford, CT 06106 Liz.Donohue@ct.gov Luke.Bronin@ct.gov Paul.Mounds@ct.gov

Connecticut Public Utilities Regulatory Authority 10 Franklin Square New Britain, CT 06051-2605 robert.luysterborghs@ct.gov michael.coyle@ct.gov clare.kindall@ct.gov

New England Governors, Utility Regulatory and Related Agencies

Anne Stubbs Coalition of Northeastern Governors 400 North Capitol Street, NW Washington, DC 20001 coneg@sso.org

Heather Hunt, Executive Director New England States Committee on Electricity 655 Longmeadow Street Longmeadow, MA 01106 <u>HeatherHunt@nescoe.com</u> JasonMarshall@nescoe.com

Sarah Hofman, Executive Director
New England Conference of Public Utilities
Commissioners
50 State Street – Suite 1
Montpelier, VT 05602
director@necpuc.org
shofmannnecpuc@gmail.com

James Volz, President
New England Conference of Public Utilities
Commissioners
112 State Street, Drawer 20
Montpelier, VT 05620-2601
james.volz@state.vt.us

Harvey L. Reiter, Esq.
Counsel for New England Conference of Public Utilities Commissioners, Inc.
c/o Stinson Morrison Hecker LLP
1150 18th Street, N.W., Ste. 800
Washington, DC 20036-3816
HReiter@stinson.com