JANUARY 12, 2024 | WEBEX

Draft 2024 Heating Electrification Forecast

Load Forecast Committee

ISO-NE PUBLIC

Tim Costa

LOAD FORECASTING ANALYST

LOAD FORECASTING, SYSTEM PLANNING

Objective

- The purpose of today's presentation is to:
 - 1. Share the updated draft heating adoption forecasts
 - 2. Share the draft heating energy and demand forecasts

ISO-NE PUBLIC

BACKGROUND

Heating Electrification Forecast

Overview

- For the CELT 2020 forecast, the forecast focused on residential adoption of air-source heat pumps (ASHPs) across the region
- For the CELT 2021 forecast the methodology was improved to account for both full and partial residential ASHP heating applications
- No updates were made to the forecast methodology for the CELT 2022 forecast
- For the CELT 2023 forecast ISO worked with an external consultant to overhaul the methodology
 - Expanded the scope of the forecast to include both space and water heating for the residential and commercial sectors
 - Adoption was developed based on "heating pathways" approach that considers the various technological pathways for space and heating electrification
 - Detailed demand modeling that considers building type and heating pathway
- Details regarding the CELT 2023 forecast methodology can be found in the <u>2023 Heating</u> <u>Electrification Forecast</u>

ISO-NE PUBLIC

Methodology Overview

- Heating Electrification Forecast methodology leverages the National Renewable Energy Laboratory's ResStock and ComStock datasets, and is based on four sequential tasks
 - 1. New England building stock characterization (slides 5-10 of the <u>CELT 2023 Heating Electrification</u> Forecast)
 - Comprehensive characterization of the existing New England building stock, including currently deployed space conditioning and water heating technologies
 - 2. Development of "heating pathways" (slides 11-15 of the <u>CELT 2023 Heating Electrification Forecast</u>)
 - Heating pathways specify a technology that could be used to either partially or fully electrify a given building's space or water heating needs
 - Reflect likely routes for adoption of efficient electric heating technologies in New England
 - 3. Forecast of adoption along each "heating pathway" (slides 16-19 of the <u>CELT 2023 Heating</u> <u>Electrification Forecast</u>)
 - Level of adoption of technologies along specified pathways for a variety of building types in the residential and commercial sectors
 - 4. Hourly demand modeling (Slides 33-38 of the CELT 2023 Heating Electrification Forecast)
 - Captures the electric impacts of each adoption pathway for each building type in the residential and commercial sectors
 - <u>Updates to the partial heating demand modeling</u> were discussed at the LFC meeting held on December 8, 2023

ISO-NE PUBLIC

3.5

2.5

5

10

Heating Electrification Forecast

Example: Residential Space Heating

DRAFT 2024 ADOPTION FORECASTS

ISO-NE PUBLIC

Draft Adoption Forecasts

- Draft 2024 heating adoption forecasts are consistent with the 2023 CELT
 - Incremental adoption starts in 2024, with 2023 removed
- The next several slides focus on the draft adoption forecasts of electrified space and water heating technologies for the entire region
 - State-by-state adoption materials are included as Appendices

ISO-NE PUBLI

Residential Space Heating Adoption

ISO-NE PUBLIC

- Adoption forecast for residential space heating (full + partial) is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes more than 4.4 million housing units with electrified space heating electrified by 2050
 - ~69% of total housing stock
 - ~84% of fossil fueled heating
- The regional forecast penetration of electrified residential space heating according to legacy heating fuels is shown on the next slide, including a breakdown of full versus partial heating
 - Similar graphics for state forecast penetrations are included in <u>Appendix I</u>

Adoption By Legacy Residential Space Heating Fuel New England

Penetration, % housing units

Commercial Space Heating Adoption

- Adoption forecast for commercial space heating (full + partial) is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes more than 2.7 billion square feet of commercial space heating electrified by 2050
- The regional forecast penetration of electrified commercial space heating according to legacy heating fuels is shown on the next slide, including a breakdown of full versus partial heating
 - Similar graphics for state forecast penetrations are included in <u>Appendix II</u>

Adoption By Legacy Commercial Space Heating Fuel New England

Residential Water Heating Adoption

- Adoption forecast for residential HPWHs is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes almost 3.6 million homes with electrified water heating by 2050
 - ~55% of total housing stock
 - ~78% of fossil fueled heating
- Regional forecast penetration of HPWHs according to legacy water heating fuels is shown on the next slide
 - Similar graphics for state forecast penetrations are included in <u>Appendix III</u>

Adoption By Legacy Residential Water Heating Fuel New England

Commercial Water Heating Adoption

- Adoption forecast for commercial water heating is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes electrification of water heating serving almost a billion SF of commercial space by 2050
- Regional forecast penetration of HPWHs according to legacy water heating fuels is shown on the next slide
 - Similar graphics for state forecast penetrations are included in <u>Appendix IV</u>

Adoption By Legacy Commercial Water Heating Fuel New England

DRAFT 2024 ENERGY FORECAST

Draft 2024 Heating Electrification Forecast

Monthly Energy, GWh

Draft 2024 Heating Electrification Forecast

Annual Energy, GWh

	Annual Energy (GWh)									
Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Connecticut	96	169	249	337	436	546	673	825	1,008	1,228
Massachusetts	263	475	726	1,016	1,348	1,725	2,154	2,646	3,198	3,794
Maine	142	245	355	474	602	740	891	1,062	1,255	1,469
New Hampshire	40	69	101	136	176	222	275	336	403	477
Rhode Island	25	45	66	91	118	149	184	226	278	340
Vermont	72	124	178	237	300	368	441	519	601	688
Total	640	1,127	1,676	2,292	2,979	3,749	4,618	5,614	6,742	7,996

ISO-NE PUBLIC

Annual Heating Electrification Energy

Draft CELT 2024 vs. Final CELT 2023

DRAFT 2024 DEMAND FORECAST

Draft 2024 Heating Electrification Forecast

Monthly Demand, 50/50

ISO-NE PUBLIC

Draft 2024 Heating Electrification Forecast

Winter (January) Demand, 50/50

		Winter Peak (MW)									
Year	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	2033-34	
Connecticut	36	72	111	155	203	257	322	400	494	605	
Massachusetts	94	195	312	445	594	763	955	1,176	1,420	1,683	
Maine	37	75	115	159	210	268	334	410	497	591	
New Hampshire	13	26	40	55	74	95	121	148	178	212	
Rhode Island	9	19	30	42	55	70	87	109	135	165	
Vermont	19	37	55	76	104	138	177	223	275	333	
Total	204	418	661	935	1,244	1,591	1,986	2,453	2,984	3,578	

Notes:

- 1. State values are non-coincident peak loads, while total (regional) values are coincident peak loads. Non-coincident peaks do not sum to coincident peaks due to weather/load diversity across New England.
- 2. Forecast values are based on heating forecast demand distributions only, and therefore, are slightly different than those based on gross demand forecast distributions, which are discussed separately during today's LFC meeting.

ISO-NE PUBLIC

Winter Heating Electrification Peak Demand, 50/50

Draft CELT 2024 vs. Final CELT 2023

Draft 2024 Heating Electrification Forecast

Summer (July) Demand, 50/50

	Summer Peak (MW)									
Year	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Connecticut	0	1	2	3	4	5	7	9	11	14
Massachusetts	1	2	4	7	10	14	19	25	33	43
Maine	0	1	1	2	3	4	5	7	9	12
New Hampshire	0	0	1	1	2	2	3	3	4	5
Rhode Island	0	0	1	1	2	2	3	4	5	6
Vermont	0	0	0	1	1	1	2	2	3	4
Total	2	5	9	14	21	28	38	50	66	85

ISO-NE PUBLIC

25

Notes:

1. Summer demand values are due to electrified water heating

50/50 Winter Peak Composition

January 2034

- Plot shows relative composition of hourly winter 50/50 peak demand impacts of heating electrification in January 2033
 - Residential space heating ("Space-Res")
 - Commercial space heating ("Space-Com")
 - Residential water heating ("Water-Res")
 - Commercial water heating ("Water-Com")

ISO-NE PUBLIC

- Demand during morning peak hours is significantly higher than during typical coincident winter peak hour(s) today (hours 18-19)
- ISO will continue investigating the outlook for potential load shape impacts such as these as part of its electrification forecasting efforts

NEXT STEPS

Next Steps

- ISO will continue to work with stakeholders to update the heating forecast as needed
 - Significant changes are not anticipated
- Any significant changes to the forecast will be shared at the February 23, 2024 LFC meeting

ISO-NE PUBLIC

ISO-NE PUBLIC

APPENDIX I

State Adoption – Residential Space Heating

Residential Space Heating

Legacy Fuel Sources and Heating Electrification Pathways

ISO-NE PUBLIC

- Adoption modeling focuses exclusively on legacy fossil fueled space heating:
 - Fuel Oil, propane, and natural gas

			Sta	arting Sha	re of Hous	sing Units,	, %	
	Electricity	16.5	14.9	5.7	8.3	9.9	5.8	12.8
le	Fuel Oil	41.9	26.7	64.3	45.5	31.4	43.5	37.4
ating Ft "X	atural Gas	35.4	53.3	6.2	19	55	17.7	38.9
ace He	None	0	0.2	0.1	0.5	0	0	0.1
α α	Other Fuel	2.8	2.2	15.3	10.3	2.1	18	5.4
	Propane	3.4	2.7	8.4	16.4	1.6	15.1	5.4
		СТ	MA	ME	NH	RI	VT	NE

Residential Space Heating Pathways

Heating Type	Technology Type	Heating Displacement
	Ducted ASHP - Full	Full
	Ducted ASHP - Partial	Partial
C	Ductless ASHP - Full	Full
Space	Ductless ASHP - Partial	Partial
Treating	Ground Source Heat Pump	Full
	Air to Water Heat Pump	Full
	Packaged Terminal Heat Pump	Partial

ASHP = Air Source Heat Pump

Adoption By Legacy Residential Space Heating Fuel

Connecticut

Adoption By Legacy Residential Space Heating Fuel

Massachusetts

MA: Natural Gas (53.3% of housing stock)

Adoption By Legacy Residential Space Heating Fuel Maine

ME: Natural Gas (6.2% of housing stock)

Adoption By Legacy Residential Space Heating Fuel

New Hampshire

Adoption By Legacy Residential Space Heating Fuel Rhode Island

RI: Natural Gas (55% of housing stock)

Adoption By Legacy Residential Space Heating Fuel

Vermont

APPENDIX II

State Adoption – Commercial Space Heating

Commercial Space Heating

Legacy Fuel Sources and Heating Electrification Pathways

ISO-NE PUBLIC

- Adoption modeling focuses exclusively on legacy fossil fueled space heating:
 - Fuel Oil, propane, and natural gas

		Star	ting Shar	e of Com	mercial SI	F, %	
DistrictHeating	2.3	2.2	1.4	3.5	2.2	1.9	2.2
Electricity	17.7	13	10.8	11.9	10.2	8.3	13.6
P FuelOil	33.6	22.5	57.1	34.4	21.5	33.4	29.5
NaturalGas	26.6	43.6	2.7	15.6	50.5	19.6	33.2
NoHeating	12.8	14.4	11.6	12.5	12.4	8.8	13.3
Propane	7	4.2	16.3	22.1	3.3	28.1	8.1
	СТ	MA	ME	NH	RI	VT	NE

Commercial Space Heating Pathways

Heating Type	Technology Type	Heating Displacement
	District Heating via Geothermal Heat Pump	Full
	Dual Fuel Heat Pump RTU	Partial
	Heat Pump RTU	Full/Partial
Space	VRF system (air-source)	Full
Heating	Air-to-Water Heat Pump	Full
	Ducted Air Source Heat Pump	Full
	Ducted Air Source Heat Pump	Partial
	Ductless Air Source Heat Pump	Full
	Ductless Air Source Heat Pump	Partial

RTU = Rooftop Unit; VRF = Variable Refrigerant Flow

39

Space Heating Fue

Adoption By Legacy Commercial Space Heating Fuel Connecticut

ISO-NE PUBLIC

Heat Pump RTU - Full

Adoption By Legacy Commercial Space Heating Fuel Massachusetts

ISO-NE PUBLIC

Air-to-Water Heat Pump

Ground Source Heat Pump

Heat Pump RTU - Full

Heat Pump RTU - Partial VRF system (air-source)

Water-Source Heat Pump

Dual Fuel Heat Pump RTU - Full

MA: NaturalGas (43.6% of total commercial SF)

100

Full

Adoption By Legacy Commercial Space Heating Fuel Maine

Adoption By Legacy Commercial Space Heating Fuel New Hampshire

Adoption By Legacy Commercial Space Heating Fuel Rhode Island

Adoption By Legacy Commercial Space Heating Fuel Vermont

ISO-NE PUBLIC

APPENDIX III

State Adoption – Residential Water Heating

Residential Water Heating

Legacy Fuel Sources and Heating Electrification Pathways

ISO-NE PUBLIC

- Adoption modeling focuses exclusively on legacy fossil fueled space heating:
 - Fuel Oil, propane, and natural gas

		Sta	arting Sha	re of Hous	sing Units	, %	
Electricity	30.6	25.5	35.7	33.9	23.4	33.2	28.9
Fuel Oil	25.5	17	38.9	26.6	18.6	27.8	23
Natural Gas	40.3	54.1	15.9	25.5	55.7	23.2	42.4
Other Fuel	0	0.1	0.5	0.1	0.1	0.5	0.2
Propane	3.6	3.3	8.9	13.9	2.3	15.3	5.5
	СТ	MA	ME	NH	RI	VT	NE

Residential Water Heating Pathways

Heating	Technology	Heating
Type	Type	Displacement
Water Heating	Heat Pump Water Heater	

Adoption By Legacy Residential Water Heating Fuel

Connecticut (left) and Massachusetts (right)

Adoption By Legacy Residential Water Heating Fuel *Maine (left) and New Hampshire (right)*

Adoption By Legacy Residential Water Heating Fuel *Rhode Island (left) and Vermont (right)*

APPENDIX IV

State Adoption – Commerical Water Heating

Commercial Water Heating

Legacy Fuel Sources and Heating Electrification Pathways

ISO-NE PUBLIC

- Adoption modeling focuses exclusively on legacy fossil fueled space heating:
 - Fuel Oil, propane, and natural gas

	Starting Share of Commercial SF, %								
DistrictHeating	1.1	1.2	0.7	1.1	0.9	1.5	1.1		
Electricity	57.3	53	62.8	57.2	46.5	57.2	55		
FuelOil	11.4	7.7	16.2	13.5	7.9	14.4	10		
NaturalGas	26.2	34.9	11.4	18	42.1	19.8	29.3		
Propane	4.1	3.2	8.9	10.3	2.6	7	4.6		
	СТ	MA	ME	NH	RI	VT	NE		

Commercial Water Heating Pathways

	Heating Type	Technology Type	Heating Displacement
	Water Heating	Heat Pump Water Heater	Full
		Heat Pump Water Heater with Booster	Partial

52

Water Heating Fue

Adoption By Legacy Commercial Water Heating Fuel

Connecticut (left) and Massachusetts (right)

Adoption By Legacy Commercial Water Heating Fuel *Maine (left) and New Hampshire (right)*

Adoption By Legacy Commercial Water Heating Fuel *Rhode Island (left) and Vermont (right)*

