Final 2015 Solar PV Forecast Details
Outline

• Background & Overview
• Distribution Owner Survey Results
• State Forecast Assumptions and Inputs
• ICF’s PV Economic Drivers Study
• Discount Factors & Seasonal Claimed Capability
• Final 2015 PV Forecast
• Classification of PV Forecast by Market Participation Type
• Geographic Distribution of PV Forecast
BACKGROUND & OVERVIEW
Background

• The 2014 PV forecast represented the first multistate forecast
 – The forecast was primarily based on state policy goals

• Many factors influence the future commercialization potential of PV resources, some of which include:
 – Policy drivers:
 • Feed-in-tariffs (FITs)/Long-term procurement
 • State RPS programs
 • Net energy metering (NEM)
 • Changes to federal Investment Tax Credit (ITC), post-2016;
 – Other drivers:
 • Role of private investment in PV development
 – PV development occurs using a variety of business/ownership models
 • Future equipment and installation costs
 • Future wholesale and retail electricity costs

• The draft 2015 PV forecast methodology is similar to that of the 2014 forecast
Background, cont’d

• PV development is happening more rapidly than projected in 2014
 – Based on discussions with stakeholders and data exchange with the New England states and Distribution Owners
 – The 2015 PV forecast is higher than the 2014 PV forecast

• The interrelated factors influencing the potential future development of PV resources are complex
 – The 2015 PV forecast reflects a qualitative approach, but with better information than was available to the ISO last year
What’s New in the 2015 PV Forecast?

• Greater availability of historical data
 – Distribution owner survey of installations
 – Energy production information from the states (to be provided by March 2)

• Consideration of the anticipated economic drivers of PV over the forecast horizon

• Updates on state policies and programs influencing PV deployment in New England

• Classification of PV resources by market type
 – FCM resources with capacity supply obligations
 – Settlement only resources that are not FCM resources
 – Behind the meter resources that are already accounted for as part of the ISO load forecast*
 – Other behind the meter resources not accounted for as part of the ISO load forecast

*Existing PV decreases the historical loads seen by the ISO, which are an input to the load forecast
2015 DG Forecast Development

Meetings

12/15/2014
DGFWG
Kickoff Meeting
1) State Policy
Presentations
2) Initial ICF Discussion
3) Utility PV Data

2/27/2015
DGFWG
1) End of Year
Survey Results
2) Draft DG Forecast
3) Final ICF Report

4/22/2015
DG Forecast
Discussion at PAC

4/14/2015
DGFWG Meeting
to Discuss
Comments on Final
Draft DG Forecast

Milestones

12/4/2014

1/1/2015

1/5/2015
End of 2014 DG
Survey Sent to Utilities

1/15/2015
End of 2014 DG
Surveys Due to ISO

2/1/2015

2/23/2015
Draft DG Forecast
Released by ISO-NE

3/1/2015

3/9/2015
Comments on Draft
DG Forecast
Due to ISO-NE

3/1/2015
Aggregate Hourly or
Monthly
PV Production
by State
From 1/1/12 - 1/31/15
Due to ISO

4/1/2015
Issue Final Draft
DG Forecast

4/1/2015

5/1/2015
Final DG Forecast
Released by ISO-NE
DISTRIBUTION OWNER SURVEY RESULTS

Solar PV Installed Through December 31, 2014
PV Installed Through 2014

- The ISO thanks the distribution owners that responding to the survey of DG installations
 - The survey is a critical input to the PV forecast

- Distribution Owners provided PV nameplate installation data (in MW$_{ac}$) within their respective service territories as of 12/31/14

- Distribution Owners serving approximately 95% of the New England load responded: (check list below)
 - **CT**: CL&P, CMEEC, UI
 - **ME**: CMP, Emera, MEPUC
 - **MA**: Ashburnham, Braintree, Chicopee, National Grid, Norwood, NSTAR, Shrewsbury, Unitil, West Boylston, WMECo
 - **NH**: Liberty, NHEC, PSNH, Unitil
 - **RI**: National Grid
 - **VT**: BED, GMP, VEC, VPPSA, WEC

- Based on respondent submittals, year-end 2014 installed nameplate PV by Distribution Owner and state are listed on the next slides
2014 Year-End Installed PV by Distribution Owner

<table>
<thead>
<tr>
<th>State & Utility</th>
<th>Installed Capacity (MW<sub>ac</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td></td>
</tr>
<tr>
<td>Connecticut Light & Power</td>
<td>99.80</td>
</tr>
<tr>
<td>Connecticut Municipal Electric Energy Co-op</td>
<td>0.45</td>
</tr>
<tr>
<td>United Illuminating</td>
<td>18.55</td>
</tr>
<tr>
<td>Maine</td>
<td></td>
</tr>
<tr>
<td>Central Maine Power</td>
<td>8.86</td>
</tr>
<tr>
<td>Emera</td>
<td>1.52</td>
</tr>
<tr>
<td>Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Ashburnham Municipal Light Plant</td>
<td>3.44</td>
</tr>
<tr>
<td>Braintree Electric Light Dept</td>
<td>0.48</td>
</tr>
<tr>
<td>Chicopee Electric Light</td>
<td>7.82</td>
</tr>
<tr>
<td>National Grid</td>
<td>310.44</td>
</tr>
<tr>
<td>Norwood Municipal Light Dept</td>
<td>0.08</td>
</tr>
<tr>
<td>NSTAR</td>
<td>231.15</td>
</tr>
<tr>
<td>Reading Municipal Light District</td>
<td>0.79</td>
</tr>
<tr>
<td>Shrewsbury Electric & Cable Operations</td>
<td>2.59</td>
</tr>
<tr>
<td>Unitil</td>
<td>7.69</td>
</tr>
<tr>
<td>West Boylston Municipal Lighting Plant</td>
<td>0.32</td>
</tr>
<tr>
<td>Western Massachusetts Electric Company</td>
<td>46.12</td>
</tr>
<tr>
<td>Other Municipals, aggregated by ISO per MA SREC data</td>
<td>56.00</td>
</tr>
</tbody>
</table>
2014 Year-End Installed PV by Distribution Owner

<table>
<thead>
<tr>
<th>State & Utility</th>
<th>Installed Capacity (MW$_{ac}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td></td>
</tr>
<tr>
<td>Liberty</td>
<td>0.45</td>
</tr>
<tr>
<td>New Hampshire Electric Co-op</td>
<td>2.61</td>
</tr>
<tr>
<td>Public Service of New Hampshire</td>
<td>8.33</td>
</tr>
<tr>
<td>Unitil</td>
<td>1.32</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>18.21</td>
</tr>
<tr>
<td>National Grid</td>
<td>18.21</td>
</tr>
<tr>
<td>Vermont</td>
<td>81.85</td>
</tr>
<tr>
<td>Burlington Electric Department</td>
<td>1.19</td>
</tr>
<tr>
<td>Green Mountain Power</td>
<td>67.62</td>
</tr>
<tr>
<td>Vermont Electric Co-op</td>
<td>9.48</td>
</tr>
<tr>
<td>Vermont Public Power Supply Authority</td>
<td>1.89</td>
</tr>
<tr>
<td>Stowe Electric Department</td>
<td>0.24</td>
</tr>
<tr>
<td>Washington Electric Co-op</td>
<td>1.42</td>
</tr>
<tr>
<td>New England Total</td>
<td>908.8</td>
</tr>
</tbody>
</table>
2014 Year-End PV Installed Capacity (MW_{AC})
State-by-State

Total installed nameplate PV (in MW_{AC} as of 12/31/14) according to data provided to ISO by regional Distribution Owners.

<table>
<thead>
<tr>
<th>State</th>
<th>Installed Capacity (MW_{AC})</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>118.80</td>
<td>13%</td>
</tr>
<tr>
<td>Maine</td>
<td>10.38</td>
<td>1%</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>666.83*</td>
<td>73%</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>12.71</td>
<td>1%</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>18.21</td>
<td>2%</td>
</tr>
<tr>
<td>Vermont</td>
<td>81.85</td>
<td>9%</td>
</tr>
<tr>
<td>New England Total</td>
<td>908.78</td>
<td>100%</td>
</tr>
</tbody>
</table>

Notes:
*Includes values based on MA SREC data associated with 35 of the 41 MA munis

Note: Heat map shows total installed PV by municipality
STATE FORECAST ASSUMPTIONS AND INPUTS
Introduction

• The PV forecast acknowledges the significant trend in PV development and its potential impact on the New England process

• All state-by-state assumptions and inputs to the PV forecast are listed on the following slides
Forecast Methodology

MA Assumptions

- **MA DPU’s 12/15/14 DGFWG presentation** serves as primary source for MA policy information.

- A DC-to-AC derate ratio of 83% is applied to the MA SREC goal to determine AC nameplate of state goal:
 - PV system designers/developers typically choose to oversize their solar panel array with respect to their inverter(s) by a factor of 1.2**
 - DC nameplate capacity is determined by the sum of the DC ratings of all the panels that make up the solar array, and AC nameplate capacity is determined by the (sum of the) inverter(s) rating(s).
 - E.g., a 120 kW_{DC} solar panel array is connected to 100 kW_{AC} inverter.
 - This factor is called any of the following:
 - Array-to-inverter ratio, oversizing ratio, overloading ratio, DC-to-AC ratio
 - \(\frac{1}{1.2} = 83\%\)
 - Converted MA 2020 goals: 1,600 MW_{DC} = 1,358 MW_{AC}

Forecast Methodology

MA Assumptions, cont’d

• MA SREC I/II programs successfully achieve 2020 state goal

• Remaining MWs needed to reach state goal are applied from 2015-2020 according to the following anticipated factors:
 – Planned reduction of federal ITC in 2016 will promote increased development through 2016
 – Program stabilizes from 2017-2020 until goal is achieved

• Post-SREC (after 2020) forecast values are kept at 2020 growth level, but are more significantly discounted (refer to slide 30)
Forecast Methodology

CT Assumptions

- **CT DEEP’s 9/30/13 DGFWG presentation** serves as primary source for CT policy information
 - Policy updates were provided verbally during the 12/15/14 DGFWG meeting

- ZREC program will be satisfied entirely with PV
 - 288 MW CL&P + 72 MW UI = 360 MW total
 - Year 4 competitive solicitation scheduled for April 2015
 - Assumed 37 MW of ZREC projects in service by 12/31/14
 - Remaining 323 MW go into service from 2015-2020
 - Project commissioning within approximately 2 years from procurement
 - Program review in year four will find technology costs have decreased and extend program for its last two years (refer to PA 11-80, Section 107(c)(2))
Preliminary Forecast Methodology

CT Assumptions, cont’d

- CT Green Bank’s Residential Solar Investment Program
 - 20.75 MW_{AC}/year (25 MW_{DC}) for 2015, based on recent project approvals and those anticipated this year

- Discrete utility-scale project
 - 20 MW project in Sprague/Lisbon assumed to be commissioned in 2016

- Existing PV by end-of-2014 is based on Distribution Owner survey results
 - Includes approximately 30 MW of “legacy” PV that pre-existed aforementioned programs

- Post-ZREC (after 2019) forecast values are kept at 2018 growth level, but are more significantly discounted (refer to slide 30)
Forecast Methodology

VT Assumptions

• **VT DPS’ 12/15/14 DGFWG presentation** serves as primary source for CT policy information

 • PV comprises 110 MW of Standard Offer Program goal of 127.5 MW goal is reached by 2022
 – Assume 34 MW of SOP projects in-service by end of 2014, remaining MWs applied evenly over years 2015-2023

 • Assume net metering projects will promote 135 MW of PV until 15% cap is reached
 – Planned reduction of federal ITC in 2016 will promote increased development through 2016, with residual impact continuing through 2017

 • Assume 75% of existing PPA projects reported by DPS go into service
 – 2014: 3.7 MW, 2015: 2.95 MW, 2016: 2.95 MW

 • Overall timing and total capacity of annual installed PV are generally consistent with VT DPS’s 9/30/13 presentation to DGFWG

 • Annual forecast value from 2023 kept constant for 2024 (post-policy), but is more significantly discounted (refer to slide 30)
Forecast Methodology

RI Assumptions

- **RI OER’s 12/15/14 DGFWG presentation** serves as primary source for RI policy information

- Consistent with DG Standard Contract program data to date
 - A total of 30 MW of DG Standards Contract projects will be PV

- Renewable Energy Growth Program, 2016-2021
 - Total of 144 MW PV (90% of goal) anticipated, applied from 2016-2021 in proportion to phased-in timeline with one year commissioning for 50% of procured capacity, and two year commissioning for the remaining 50% of procured capacity

- Renewable Energy Fund & Net Metering
 - Combined influence results in 2.7 MW/year over the forecast horizon

- Post-2021 (after REGP ends), annual forecast values are kept constant, but are more significantly discounted (refer to slide 30)
Forecast Methodology

NH & ME Assumptions/Inputs

- **NH**
 - [NH PUC’s 12/15/14 DGFWG presentation](#) serves as primary source for NH policy information
 - Based on Distribution Owner survey results, net metering and other state grants/incentives resulted in 4.5 MW of PV growth in 2014
 - Growth carried forward at constant rate throughout forecast period
 - Assume 50 MW net metering cap reached by 2020
 - Post-2020, annual forecast values are kept constant, but are more significantly discounted (refer to slide 30)

- **ME**
 - [ME PUC’s 9/30/13 DGFWG presentation](#) serves as primary source for ME policy information
 - Based on Distribution Owner survey results, net metering and other state grants/incentives resulted in 2.7 MW of PV growth in 2014
 - Growth carried forward at constant rate throughout forecast period
ICF’S PV ECONOMIC DRIVERS STUDY
What the ICF Study Is

• ICF was contracted by ISO-NE to deconstruct PV economics into individual drivers to help inform ISO-NE’s 2015 PV forecast process in response to stakeholder feedback that PV economics need to be considered as part of the forecast process

• The study helps illustrate the complex interplay of public and private investment and business models commonly involved in PV commercialization

• It characterizes the relative importance of economic drivers under standardized assumptions across states & customer types

• The study assesses how economic drivers may change over time due to changes in technology cost and performance, electricity rates, federal & state incentives, etc.

• Links to the ICF study materials
What the ICF Study Is Not

• The study does NOT analyze the cost-effectiveness of federal, state, or utility PV policies nor make value judgments about the need for, or appropriateness of, such policies.

• Not a review of the “value of solar” nor the grid integration of renewable energy

• Not a forecast of PV capacity deployment, electricity production, nor incentive levels in the region

• Does not suggest how the ISO should use the results
Interpretation of ICF Results

• The results of the ICF study are useful in the determination of suitable discount factors applied over the forecast horizon.

• To this end, values for the “Fully Supported PV Economics” summary measure were compared across all project start years and customer types in each state to aid in understanding the ICF results.
 – Fully Supported PV Economics represent the “best-case” scenario for PV projects, in which the benefits of all federal and state incentives are captured.

• Given that the overall PV economics in 2015 are similar to 2014, normalizing the results to the 2015 base year helps to compare the PV economics over time to the recent PV economics within which recent PV growth trends occurred in each state.
 – This comparison is based on the numerous assumptions and inputs, as well as the financial modeling methodology used by ICF.
ISO’s Main Takeaways From ICF Study

• There are a number of interrelated federal and state policies, financing options, and ownership models that should be considered when evaluating the viability of current and future PV investments
 – Evaluating existing and future PV economics is a complex task!
 – Frequently, there are a dozen individual drivers that increase or decrease PV economics by $.01/kWh or more on a levelized basis for PV projects

• The largest economic drivers of PV tend to be:
 1. System installed cost (i.e., first cost)
 2. Physical power revenue (wholesale, offsetting on-site electricity loads, net metering)
 3. Renewable energy credit (REC) revenue
 4. Federal investment tax credit
 5. Federal depreciation

(The order of importance (1-5) of these largest economic drivers can vary between state, customer type, and project start year)

• Future trends with respect to all of these drivers are uncertain

• Physical power revenues become increasingly important over time, while REC revenues and total federal support tend to decline over time
ISO’s Main Takeaways From ICF Study, cont’d

• PV projects should continue to offer strong investment returns in the next couple of years if all incentives can be monetized
 – Recent trends in PV deployment should continue through 2016, and may accelerate near the planned decline of the federal Investment Tax Credit (ITC)
 – ISO suggests that the following trends will likely result:
 • Policy drivers that do not significantly constrain the timing of PV development (SRECs, net metered project growth below caps) will likely facilitate accelerated deployment until the slated ITC reduction
 • Policies that involve periodic procurement or solicitation (CT ZREC, RI Renewable Energy Growth, VT Standard Offer) will likely facilitate more consistent, incremental growth

• The planned decline of the federal ITC beginning in 2017, together with the planned reduction of some state PV policy support, creates more challenging overall PV economics in 2019 and 2024, as compared to 2015
 – Much more uncertainty regarding PV deployment in the region from 2017 onward

• By the 2024 timeframe, the overall economics of PV investment does not entirely recover from the ITC reduction, despite the following assumptions:
 – Modest reductions in installed costs (in real dollars)
 – Improvements in system performance
 – Increases in wholesale/retail electricity rates
 – Existing net metering policies remain intact, and existing net metering caps would not be constraints on future PV investment
DISCOUNT FACTORS & SEASONAL CLAIMED CAPABILITY (SCC)
Discount Factors

• Notwithstanding the recent success of state programs, discount factors were developed and incorporated into the forecast, and are meant to reflect a degree of uncertainty in future PV commercialization

• The results of the ICF study have been considered as part of developing the discount factors

• Discount factors were developed for two types of future PV inputs to the forecast:
 1. **Policy-based** – PV that results from state policy
 • Discounted by values that increase annually up to a maximum value of 25%
 2. **Post-policy** – PV that may be installed after existing state policies end
 • Discounted by 50% due to the higher degree of uncertainty associated with possible future expansion of state policies and/or future market conditions required to support PV commercialization in the absence of policy expansion

• All discount factors are applied equally in all states
Discount Factors, cont’d

- Annual discount factors for policy-based solar PV are tabulated below

 Anticipated federal ITC reduction

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>5%</td>
<td>5%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
</tbody>
</table>

- All post-policy MWs are discounted at 50%
PV’s Seasonal Claimed Capability

• In accordance with Market Rule 1, Section III.13.1.2.2.1(c), ISO uses Seasonal Claimed Capability (SCC) as a measure of a resource’s capability to perform under specified summer and winter conditions
 – As an Intermittent Resource, PV’s SCC is determined using the median of net output during Intermittent Reliability Hours, which are defined as follows:
 • Summer : June-September, 14:00 through 18:00 (Hours Ending 14 – 18)
 • Winter : October-May, 18:00 and 19:00 (Hours Ending 18 – 19)

• Based on analysis of three years of PV performance data (2012-2014), the summer SCC for PV in the region is 40% of nameplate (and winter SCC is zero); however, it should be cautioned that:
 1. PV performance often differs from its summer SCC during the variety of peak load conditions that occur
 2. As PV penetrations grow across the region, PV will shift peak net loads later in the afternoon, when PV output is diminishing due to the lowering solar altitude angle as the sun begins to set, thereby decreasing PV’s incremental contribution to serving peak loads

• For these reasons, values that differ from the 40% summer SCC estimate may be more suitable for various planning studies, based on the assumptions (e.g., load level) and intent of each study in question
FINAL 2015 PV FORECAST
Final Forecast Inputs

Pre-Discounted Nameplate Values

<table>
<thead>
<tr>
<th>States</th>
<th>Pre-Discount Annual Total MW (AC nameplate rating)</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>118.8 74.6 94.6 53.8 53.8 53.8 53.8 53.8 53.8 53.8 53.8</td>
<td>718.6</td>
</tr>
<tr>
<td>MA</td>
<td>666.8 207.4 241.9 60.5 60.5 60.5 60.5 60.5 60.5 60.5 60.5</td>
<td>1,599.9</td>
</tr>
<tr>
<td>ME</td>
<td>10.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3</td>
<td>33.4</td>
</tr>
<tr>
<td>NH</td>
<td>12.7 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5</td>
<td>57.7</td>
</tr>
<tr>
<td>RI</td>
<td>18.2 10.2 21.5 32.0 38.7 38.7 27.5 9.5 9.5 9.5 9.5</td>
<td>224.5</td>
</tr>
<tr>
<td>VT</td>
<td>81.9 42.5 42.5 26.2 17.3 8.5 8.5 8.5 8.5 8.5 8.5</td>
<td>261.1</td>
</tr>
</tbody>
</table>

Pre-Discount Annual Policy-Based MWs	908.8 341.4 407.2 179.3 177.1 168.3 157.0 20.2 13.5 13.5 5.0	2,391.2
Pre-Discount Annual Post-Policy MWs	0.0 0.0 0.0 0.0 0.0 0.0 0.0 118.8 125.6 125.6 134.0 503.9	
Pre-Discount Annual Total (MW)	908.8 341.4 407.2 179.3 177.1 168.3 157.0 139.0 139.0 139.0 139.0 2,895.2	
Pre-Discount Cumulative Total (MW)	908.8 1,250.2 1,657.4 1,836.7 2,013.8 2,182.1 2,339.1 2,478.1 2,617.2 2,756.2 2,895.2 2,895.2	

Notes:
1. The above values are not the forecast, but rather pre-discounted inputs to the forecast (see slides 11-17 for details)
2. Yellow highlighted cells indicate that values contain post-policy MWs
3. All values include FCM Resources, non-FCM Settlement Only Generators, and load reducing PV resources
4. All values represent end-of-year nameplate capacities
Final 2015 PV Forecast

Annual Nameplate (MW$_{ac}$)

<table>
<thead>
<tr>
<th>States</th>
<th>Annual Total MW (AC nameplate rating)</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>118.8</td>
<td>70.9</td>
</tr>
<tr>
<td>MA</td>
<td>666.8</td>
<td>197.0</td>
</tr>
<tr>
<td>ME</td>
<td>10.4</td>
<td>2.2</td>
</tr>
<tr>
<td>NH</td>
<td>12.7</td>
<td>4.3</td>
</tr>
<tr>
<td>RI</td>
<td>18.2</td>
<td>9.7</td>
</tr>
<tr>
<td>VT</td>
<td>81.9</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>Regional - Annual (MW)</td>
<td>908.8</td>
</tr>
<tr>
<td></td>
<td>Regional - Cumulative (MW)</td>
<td>908.8</td>
</tr>
</tbody>
</table>

Notes:

1. Forecast values include FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources.
2. The forecast reflects discount factors described on slides 4.
3. All values represent end-of-year installed capacities.
4. ISO is working with stakeholders to determine the appropriate use of the forecast.
Final 2015 PV Forecast

Cumulative Nameplate (\(MW_{ac}\))

<table>
<thead>
<tr>
<th>States</th>
<th>Cumulative Total MW (AC nameplate rating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>118.8</td>
</tr>
<tr>
<td>MA</td>
<td>666.8</td>
</tr>
<tr>
<td>ME</td>
<td>10.4</td>
</tr>
<tr>
<td>NH</td>
<td>12.7</td>
</tr>
<tr>
<td>RI</td>
<td>18.2</td>
</tr>
<tr>
<td>VT</td>
<td>81.9</td>
</tr>
</tbody>
</table>

| Regional - Cumulative (MW) | 908.8 | 1233.1 | 1620.0 | 1772.4 | 1914.1 | 2040.3 | 2158.1 | 2232.6 | 2305.5 | 2378.4 | 2449.1 |

Notes:

1. Forecast values include FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources.
2. The forecast reflects discount factors described on slides 4.
3. All values represent end-of-year installed capacities.
4. ISO is working with stakeholders to determine the appropriate use of the forecast.
Final 2015 PV Forecast
Annual Estimated Summer Seasonal Claimed Capability
Based on 40% of Forecasted AC Nameplate Capacity

<table>
<thead>
<tr>
<th>States</th>
<th>Estimated Summer SCC (MW)</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>47.5</td>
<td>28.3</td>
</tr>
<tr>
<td>MA</td>
<td>266.7</td>
<td>78.8</td>
</tr>
<tr>
<td>ME</td>
<td>4.2</td>
<td>0.9</td>
</tr>
<tr>
<td>NH</td>
<td>5.1</td>
<td>1.7</td>
</tr>
<tr>
<td>RI</td>
<td>7.3</td>
<td>3.9</td>
</tr>
<tr>
<td>VT</td>
<td>32.7</td>
<td>16.1</td>
</tr>
<tr>
<td>Regional - Annual Summer SCC (MW)</td>
<td>363.5</td>
<td>129.7</td>
</tr>
<tr>
<td>Regional - Cumulative Summer SCC (MW)</td>
<td>363.5</td>
<td>493.3</td>
</tr>
</tbody>
</table>

Notes:
(1) ISO’s methodology for determining SCC for Intermittent Resources is defined in [Market Rule 1, Section III.13.1.2.2.1(c)]
(2) Estimated SCC values include FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources
(3) Summer SCC values are based on the assumption that all end-of-year resources are in operation during the summer period
(4) PV’s winter SCC is assumed to be zero
(5) Different planning studies may use values different from the estimated SCC based on the intent of the study
Final 2015 PV Forecast

Cumulative Estimated Summer Seasonal Claimed Capability
Based on 40% of Forecasted AC Nameplate Capacity

<table>
<thead>
<tr>
<th>States</th>
<th>Cumulative Estimated Summer SCC (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>47.5</td>
</tr>
<tr>
<td>MA</td>
<td>266.7</td>
</tr>
<tr>
<td>ME</td>
<td>4.2</td>
</tr>
<tr>
<td>NH</td>
<td>5.1</td>
</tr>
<tr>
<td>RI</td>
<td>7.3</td>
</tr>
<tr>
<td>VT</td>
<td>32.7</td>
</tr>
</tbody>
</table>

Regional - Cumulative Summer SCC (MW)
363.5 493.3 648.0 709.0 765.6 816.1 863.2 893.0 922.2 951.3 979.6

Notes:

1. ISO’s methodology for determining SCC for Intermittent Resources is defined in [Market Rule 1, Section III.13.1.2.2.1(c)](https://example.com)
2. Estimated SCC values include FCM Resources, non-FCM Energy Only Generators, and behind-the-meter PV resources
3. Summer SCC values are based on the assumption that all end-of-year resources are in operation during the summer period
4. PV’s winter SCC is assumed to be zero
5. Different planning studies may use values different from the estimated SCC based on the intent of the study
CLASSIFICATION OF PV FORECAST BY MARKET PARTICIPATION TYPE
PV Forecast Classification of Market Type By State

Background

- In order to properly account for existing and future PV in planning studies and avoid double counting, ISO must classify PV according to its market participation (or lack thereof)
 - The four market types are shown in blue and defined on the next slide
- These market distinctions will become important as the ISO looks to use the PV forecast in a wider range of studies
 - Further and more detailed discussions will take place in other stakeholder meetings
- The classification process required the estimation of hourly PV production that is behind-the-meter (BTM), i.e., PV that does not participate in ISO markets
 - E.g., determining the amount of PV which is already embedded in the long-term load forecast requires historical hourly BTM PV production data
Market Participation Types

Mutually Exclusive to Prevent Double Counting PV

- **PV as a capacity resource in the Forward Capacity Market (FCM)**
 - Qualified for the FCM
 - Have capacity supply obligations
 - Size and location identified and visible to the ISO
 - May be supply or demand-side resources

- **Non-FCM Settlement only Resources (SOR) and Generators (per OP-14)**
 - ISO collects energy output
 - Participate only in the energy market

- **Behind-the-Meter (BTM) PV**
 - Reduces system load
 - ISO has an incomplete set of information on generator characteristics
 - ISO does not collect energy meter data, but can estimate it using other available data
 - Can be further divided into two categories:
 - **Behind-the-Meter PV Embedded in Load (BTMEL)**
 - The portion of BTM that is captured in the historical load forecast
 - Can be estimated via reconstitution of hourly historical BTM PV production
 - **Behind-the-Meter PV Not Embedded in Load (BTMNEL)**
 - The portion of BTM that is not captured in the historical load forecast (i.e., not embedded)
Final 2015 PV Forecast
Cumulative Regional PV by Market Participation Type

AC Nameplate

<table>
<thead>
<tr>
<th>Year</th>
<th>FCM</th>
<th>SOR/Gen</th>
<th>BTMEL</th>
<th>BTMNET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>335.8</td>
<td>260.4</td>
<td>468.6</td>
<td>312.5</td>
</tr>
<tr>
<td>2015</td>
<td>438.1</td>
<td>326.4</td>
<td>557.3</td>
<td>326.4</td>
</tr>
<tr>
<td>2016</td>
<td>584.7</td>
<td>347.2</td>
<td>631.1</td>
<td>326.4</td>
</tr>
<tr>
<td>2017</td>
<td>688.1</td>
<td>557.3</td>
<td>766.3</td>
<td>375.0</td>
</tr>
<tr>
<td>2018</td>
<td>1035.3</td>
<td>614.7</td>
<td>1141.3</td>
<td>400.5</td>
</tr>
<tr>
<td>2019</td>
<td>1235.1</td>
<td>659.6</td>
<td>1235.1</td>
<td>425.9</td>
</tr>
<tr>
<td>2020</td>
<td>1316.3</td>
<td>697.8</td>
<td>1316.3</td>
<td>451.4</td>
</tr>
<tr>
<td>2021</td>
<td>1395.9</td>
<td>718.1</td>
<td>1395.9</td>
<td>474.5</td>
</tr>
<tr>
<td>2022</td>
<td>1450.2</td>
<td>737.0</td>
<td>1450.2</td>
<td>497.7</td>
</tr>
<tr>
<td>2023</td>
<td>1504.2</td>
<td>755.8</td>
<td>1504.2</td>
<td>525.5</td>
</tr>
<tr>
<td>2024</td>
<td>1558.2</td>
<td>774.7</td>
<td>1558.2</td>
<td>548.6</td>
</tr>
</tbody>
</table>

PV Nameplate (MW)
Final 2015 PV Forecast
Cumulative Regional PV by Market Participation Type

Estimated Summer Seasonal Claimed Capability

Year	FCM	SOR/Gen	BTMEL	BTMNEL
2014 | 133.8 | 125.0 | 174.5 | 188.2
2015 | 229.7 | 104.7 | 169.5 | 222.9
2016 | 318.8 | 130.6 | 138.9 | 241.5
2017 | 231.7 | 250.3 | 245.9 | 308.7
2018 | 416.3 | 458.7 | 496.1 | 528.6
2019 | 528.6 | 560.5 | 582.1 | 603.8
2020 | 625.4 | 646.0 | 646.0 | 646.0

FCM	SOR/Gen	BTMEL	BTMNEL
2014 | 133.8 | 125.0 | 174.5 | 188.2
2015 | 229.7 | 104.7 | 169.5 | 222.9
2016 | 318.8 | 130.6 | 138.9 | 241.5
2017 | 231.7 | 250.3 | 245.9 | 308.7
2018 | 416.3 | 458.7 | 496.1 | 528.6
2019 | 528.6 | 560.5 | 582.1 | 603.8
2020 | 625.4 | 646.0 | 646.0 | 646.0
Cumulative SCC by Market Type

Connecticut

<table>
<thead>
<tr>
<th>Year</th>
<th>FCM</th>
<th>SOR/Gen</th>
<th>BTMEL</th>
<th>BTMNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>19.6</td>
<td>27.8</td>
<td>47.4</td>
<td>8.1</td>
</tr>
<tr>
<td>2015</td>
<td>28.7</td>
<td>8.0</td>
<td>47.0</td>
<td>8.1</td>
</tr>
<tr>
<td>2016</td>
<td>29.6</td>
<td>8.0</td>
<td>75.7</td>
<td>8.1</td>
</tr>
<tr>
<td>2017</td>
<td>31.5</td>
<td>8.0</td>
<td>74.0</td>
<td>8.1</td>
</tr>
<tr>
<td>2018</td>
<td>33.3</td>
<td>8.0</td>
<td>90.5</td>
<td>8.1</td>
</tr>
<tr>
<td>2019</td>
<td>35.2</td>
<td>8.0</td>
<td>105.9</td>
<td>8.1</td>
</tr>
<tr>
<td>2020</td>
<td>37.0</td>
<td>8.0</td>
<td>120.2</td>
<td>8.1</td>
</tr>
<tr>
<td>2021</td>
<td>38.9</td>
<td>8.0</td>
<td>134.5</td>
<td>8.1</td>
</tr>
<tr>
<td>2022</td>
<td>40.7</td>
<td>8.0</td>
<td>143.4</td>
<td>8.1</td>
</tr>
<tr>
<td>2023</td>
<td>42.6</td>
<td>8.0</td>
<td>152.3</td>
<td>8.1</td>
</tr>
<tr>
<td>2024</td>
<td>44.4</td>
<td>8.0</td>
<td>161.2</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Cumulative SCC by Market Type
Massachusetts

Year	FCM	SOR/Gen	BTMEL	BTMNEL
2014 | 127.5 | 123.3 | 160.4 | 96.3
2015 | 139.3 | 165.0 | 180.5 | 96.3
2016 | 199.2 | 192.8 | 207.6 | 140.0
2017 | 209.1 | 217.5 | 229.8 | 240.5
2018 | 203.6 | 203.6 | 226.9 | 240.5
2019 | 212.3 | 212.3 | 226.9 | 240.5
2020 | 221.0 | 221.0 | 235.6 | 244.3
2021 | 226.8 | 226.8 | 250.1 | 250.1
2022 | 232.6 | 232.6 | 255.9 | 261.7
2023 | 238.4 | 238.4 | 261.7 | 267.5
2024 | 244.2 | 244.2 | 267.5 | 294.6

Estimated PV Summer SCC (MW)
Cumulative SCC by Market Type

Maine

[Bar chart showing estimated PV Summer SCC (MW) from 2014 to 2024 by market type (FCM, SOR/Gen, BTMEL, BTMNEL)].
Cumulative SCC by Market Type

New Hampshire

Estimated PV Summer SCC (MW)
Cumulative SCC by Market Type

Vermont

<table>
<thead>
<tr>
<th>Year</th>
<th>FCM</th>
<th>SOR/Gen</th>
<th>BTMEL</th>
<th>BTMNEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>10.2</td>
<td>22.6</td>
<td>32.7</td>
<td>48.9</td>
</tr>
<tr>
<td>2015</td>
<td>10.2</td>
<td>38.7</td>
<td>48.9</td>
<td>65.0</td>
</tr>
<tr>
<td>2016</td>
<td>11.1</td>
<td>53.9</td>
<td>65.0</td>
<td>73.9</td>
</tr>
<tr>
<td>2017</td>
<td>12.0</td>
<td>61.9</td>
<td>73.9</td>
<td>79.5</td>
</tr>
<tr>
<td>2018</td>
<td>12.0</td>
<td>67.5</td>
<td>79.5</td>
<td>82.0</td>
</tr>
<tr>
<td>2019</td>
<td>13.0</td>
<td>69.1</td>
<td>82.0</td>
<td>84.6</td>
</tr>
<tr>
<td>2020</td>
<td>13.9</td>
<td>70.7</td>
<td>84.6</td>
<td>87.1</td>
</tr>
<tr>
<td>2021</td>
<td>14.8</td>
<td>72.3</td>
<td>87.1</td>
<td>89.6</td>
</tr>
<tr>
<td>2022</td>
<td>15.7</td>
<td>73.9</td>
<td>89.6</td>
<td>92.2</td>
</tr>
<tr>
<td>2023</td>
<td>16.7</td>
<td>75.5</td>
<td>92.2</td>
<td>93.9</td>
</tr>
<tr>
<td>2024</td>
<td>16.7</td>
<td>77.2</td>
<td>93.9</td>
<td></td>
</tr>
</tbody>
</table>
GEOGRAPHIC DISTRIBUTION OF PV FORECAST
Background

• A reasonable representation of the locations of existing and future PV resources is required for appropriate modeling.

• The locations of future PV resources are ultimately unknown, but mitigation of some of this uncertainty (especially for near-term development) is likely possible via analysis of available data.

• Distribution Owner queue data through 12/31/14 has been collected by regional utilities and was used to estimate the geographic distribution of the 2015 PV forecast.
ISO-NE Dispatch Zones

- ISO developed the Dispatch Zones for the active Demand Response program.
- Dispatch Zones were created in consideration of electrical interfaces.
- Quantifying existing and forecasted PV resources by Dispatch Zone will aid in the modeling of PV resources for planning and operations purposes.
Dispatch Zone Distribution of PV

<table>
<thead>
<tr>
<th>State</th>
<th>Dispatch Zone</th>
<th>% of State Based on 12/31/14 Survey Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>SEMA</td>
<td>20.3%</td>
</tr>
<tr>
<td></td>
<td>Boston</td>
<td>10.2%</td>
</tr>
<tr>
<td></td>
<td>Lower SEMA</td>
<td>17.6%</td>
</tr>
<tr>
<td></td>
<td>Central MA</td>
<td>17.2%</td>
</tr>
<tr>
<td></td>
<td>Springfield MA</td>
<td>5.9%</td>
</tr>
<tr>
<td></td>
<td>North Shore</td>
<td>5.3%</td>
</tr>
<tr>
<td></td>
<td>Western MA</td>
<td>23.5%</td>
</tr>
<tr>
<td>CT</td>
<td>Eastern CT</td>
<td>20.0%</td>
</tr>
<tr>
<td></td>
<td>Western CT</td>
<td>50.0%</td>
</tr>
<tr>
<td></td>
<td>Northern CT</td>
<td>22.0%</td>
</tr>
<tr>
<td></td>
<td>Norwalk-Stamford</td>
<td>8.0%</td>
</tr>
<tr>
<td>NH</td>
<td>New Hampshire</td>
<td>89.0%</td>
</tr>
<tr>
<td></td>
<td>Seacoast</td>
<td>11.0%</td>
</tr>
<tr>
<td>VT</td>
<td>Northwest Vermont</td>
<td>65.0%</td>
</tr>
<tr>
<td></td>
<td>Vermont</td>
<td>35.0%</td>
</tr>
<tr>
<td>RI</td>
<td>Rhode Island</td>
<td>100.0%</td>
</tr>
<tr>
<td>ME</td>
<td>Bangor Hydro</td>
<td>21.0%</td>
</tr>
<tr>
<td></td>
<td>Maine</td>
<td>53.0%</td>
</tr>
<tr>
<td></td>
<td>Portland Maine</td>
<td>26.0%</td>
</tr>
</tbody>
</table>

Note: The tabulated distribution of PV by Dispatch Zone as of December 31, 2014 is based on Distribution Owner survey data.