

ISO New England Regional Electricity Outlook

Connecticut General Assembly

ISO-NE PUBLIC

Energy and Technology Committee

Eric Johnson

DIRECTOR, EXTERNAL AFFAIRS

Weezie Nuara

EXTERNAL AFFAIRS REPRESENTATIVE

ISO New England (ISO) Has Two Decades of Experience Overseeing the Region's Restructured Electric Power System

ISO-NE PUBLIC

- Regulated by the Federal Energy Regulatory Commission
- Reliability Coordinator and Planning Coordinator for New England under the North American Electric Reliability Corporation
- Independent of companies in the marketplace and neutral on technology

Reliability Is the Core of ISO New England's Mission

ISO-NE PUBLIC

Fulfilled by three interconnected and interdependent responsibilities

Overseeing the day-to-day operation of New England's electric power generation and transmission system

Managing comprehensive regional power system planning

> Developing and administering the region's competitive wholesale electricity markets

A Range of Generation and Demand Resources Are Used to Meet New England's Energy Needs

ISO-NE PUBLIC

- **350** generators in the region
- **30,500 MW** of generating capacity
- **13,250 MW** of proposed generation in the ISO Queue
 - Mostly natural gas and wind
- **4,200 MW** of generation has retired or will retire in the next five years
- 600 MW of active demand response and 1,900 MW of energy efficiency with Capacity Supply Obligations in the Forward Capacity Market (FCM)*

* In the FCM, demand-reduction resources are treated as capacity resources.

Existing and Future Resources

New England's Transmission Grid Is the Interstate Highway System for Electricity

ISO-NE PUBLIC

- **9,000 miles** of high-voltage transmission lines (115 kV and above)
- **13 transmission interconnections** to power systems in New York and Eastern Canada
- **17%** of region's energy needs met by imports in 2016
- \$8 billion invested to strengthen transmission system reliability since 2002; \$4 billion planned
- Developers have proposed multiple transmission projects to access non-carbon-emitting resources

Annual Value of Wholesale Electricity Markets Varies with Changes in Fuel Prices

A robust transmission system allows the region to access the most economic resources

Source: 2015 Report of the Consumer Liaison Group; 2016 wholesale electricity market values are preliminary and subject to reconciliation

ISO-NE PUBLIC

The Forward Capacity Market Is Attracting Efficient and Fast-Starting Resources

ISO-NE PUBLIC

 Roughly **3,000 MW** of new gas-fired generation have come forward in recent auctions

> Wallingford (90 MW) Combustion Turbines *Commercial: June 1, 2018*

Towantic (725 MW) Combined-Cycle Gas Turbine *Commercial: June 1, 2018*

Bridgeport Harbor (484 MW) Combined-Cycle Gas Turbine – *Commercial: June 1, 2019* Footprint (674 MW) Combined-Cycle Gas Turbine Commercial: June 1, 2017

Medway (195 MW) Combustion Turbine *Commercial: June 1, 2018*

Canal (333 MW) - Combustion Turbine *Commercial: June 1, 2019*

Clear River Energy Center (485 MW) Combined-Cycle Gas Turbine *Commercial: June 1, 2019*

Energy Efficiency Is a Priority for State Policymakers

Source: American Council for an Energy-Efficient Economy

- Billions spent over the past few years and more on the horizon
 - Nearly \$4 billion invested from 2009 to 2014
 - ISO estimates \$6.6 billion to be invested in EE from 2020 to 2025

ISO-NE PUBLIC

ISO New England Forecasts Strong Growth in Solar PV

Note: This chart reflects the ISO's projections for nameplate capacity from PV resources participating in the region's wholesale electricity markets, as well as those connected "behind the meter." Source: Final 2016 ISO-NE PV Forecast (April 2016); MW values are AC nameplate.

Connecticut Installed Solar PV "Heat Map"

ISO-NE PUBLIC

10

MEGAWATTS

Energy Efficiency and Solar PV Are Slowing Peak Demand Growth and Flattening Energy Use

ISO New England Is Focused on Developing Solutions to the Region's Top Reliability Risks

ISO-NE PUBLIC

- Inadequate Natural Gas Infrastructure
 - New England is challenged to meet electricity demands with existing natural gas infrastructure, particularly during the winter

• Power Plant Retirements

- New England will need new ways to meet peak demand as aging plants close
- Renewable Resource Integration
 - Maintaining reliability as increasing levels of distributed generation and intermittent resources come online

Dramatic Changes in the Energy Mix

The fuels used to produce the region's electric energy have shifted as a result of economic and environmental factors

Percent of Total **Electric Energy** Production by Fuel Type (2000 vs. 2016)

Source: ISO New England Net Energy and Peak Load by Source

Renewables include landfill gas, biomass, other biomass gas, wind, solar, municipal solid waste, and miscellaneous fuels

Natural Gas Is the Dominant Fuel Source for New Generating Capacity in New England

Note: New generating capacity for years 2016 – 2019 includes resources clearing in recent Forward Capacity Auctions.

New England Has Relatively Few Interstate Natural Gas Pipelines and Few Delivery Points for LNG

Natural Gas and Wholesale Electricity Prices Are Linked

Monthly Average Natural Gas and Wholesale Electricity Prices in New England

Electric Energy \$/MWh

Fuel \$/MMBtu

The Region Has Lost—*and Is at Risk of Losing*— Substantial Non-Gas Resources

Major Generator Retirements:

- Salem Harbor Station (749 MW)
 4 units (coal & oil)
- Vermont Yankee Station (604 MW)
 - 1 unit (nuclear)
- Norwalk Harbor Station (342 MW)
 - 3 units (oil)
- Brayton Point Station (1,535 MW)
 - 4 units (coal & oil)
- Mount Tom Station (143 MW)
 - 1 unit (coal)
- Pilgrim Nuclear Power Station (677 MW)
 1 unit (nuclear)
- Additional retirements are looming

States Have Set Goals for Significant Reductions in Greenhouse Gas Emissions

Percent Reduction in Greenhouse Gas (GHG) Emissions Below 1990 Levels by 2050 Economy Wide*

* Some states have different baseline and target years (e.g., Maine's goal specifies reductions below 2003 levels that may be required "in the long term")

ISO-NE PUBLIC

100%

The New England states are promoting GHG reductions on a state-by-state basis, and at the regional level, through a combination of legislative mandates (e.g., CT, MA, RI) and aspirational, non-binding goals (e.g., ME, NH, VT and the New England Governors and Eastern Canadian Premiers).

State Policy Requirements Drive Proposals for Renewable Energy

State Renewable Portfolio Standard (RPS)* for Class I or New Renewable Energy by 2020

* State Renewable Portfolio Standards (RPS) promote the development of renewable energy resources by requiring electricity providers (electric distribution companies and competitive suppliers) to serve a minimum percentage of their retail load using renewable energy. Vermont's Renewable Energy Standard has a 'total renewable energy' requirement (reflected above), which recognizes all forms of new and existing renewable energy, and is unique in classifying large-scale hydropower as renewable.

ISO-NE PUBLIC

Infrastructure Will Be Needed to Deliver Energy from Proposed Resources

All Proposed Generation

Developers are proposing to build roughly 13,250 MW of generation, including nearly 6,400 MW of gas-fired generation and more than 5,800 MW of wind

Developers Are Proposing to Move Renewable Energy to New England Load Centers

ISO-NE PUBLIC

Map is representative of the types of projects announced for the region in recent years

- As of **January 1, 2017**, seventeen elective transmission projects had been proposed in the ISO Interconnection Queue, totaling more than **10,000 MW** of potential transfer capability, including:
 - Large-scale hydro resources from eastern Canada, and
 - Onshore wind resources from northern New England
- Projects seek to address public policy goals, not reliability needs
- In addition, offshore wind resources are emerging in southern New England

Source: ISO Interconnection Queue (January 2017)

For More Information...

- Subscribe to the ISO Newswire
 - <u>ISO Newswire</u> is your source for regular news about ISO New England and the wholesale electricity industry within the six-state region
- Log on to ISO Express
 - <u>ISO Express</u> provides real-time data on New England's wholesale electricity markets and power system operations
- Follow the ISO on Twitter
 - @isonewengland
- Download the ISO to Go App
 - <u>ISO to Go</u> is a free mobile application that puts real-time wholesale electricity pricing and power grid information in the palm of your hand

ISO-NE PUBLIC

About the Power Grid

Questions

ISO-NE PUBLIC

APPENDIX: BACKGROUND INFORMATION

Overall Electricity Demand Is Flattening Due to Energy Efficiency and Behind-the-Meter Solar

- **7.1 million** retail electricity customers drive the demand for electricity in New England (14.7 million population)
- Region's all-time summer peak demand set on August 2, 2006 at **28,130 MW**
- Region's all-time winter peak demand set on January 15, 2004 at **22,818 MW**
- Energy efficiency and behind-the-meter solar slow the growth in summer *peak* demand to 0.3% annually and flatten the growth in *overall* electricity demand to -0.2% annually

25

Note: Without energy efficiency and solar, the region's peak demand is forecasted to grow 1.1% annually and the region's overall electricity demand is forecasted to grow 1.0% annually. Summer peak demand is based on the "90/10" forecast for extreme summer weather.

ISO-NE PUBLIC

Solar Power Has a Significant Impact on New England's Electricity Demand

Estimated Electricity Needs Served by Solar Power — — Demand Without Solar Power — Electricity Demand Seen in Real Time

ISO-NE PUBLIC

Natural Gas and Wind Power Dominate New Resource Proposals in the ISO Queue

Approximately 13,250 MW

Power Plant Emissions Have Declined with Changes in the Fuel Mix

28

Reduction in Aggregate Emissions (ktons/yr)

Year	NO _x	SO ₂	CO ₂
2001	59.73	200.01	52,991
2015	18.86	9.11	40,312
% Reduction, 2001–2015	₩ 68%	₽ 95%	₽ 24%

Reduction in Average Emission Rates (Ib/MWh)

Year	NO _x	SO ₂	CO2
1999	1.36	4.52	1,009
2015	0.35	0.17	747
% Reduction, 1999–2015	₹74%	₽ 96%	₽ 26%

Source: 2015 ISO New England Electric Generator Air Emissions Report, January 2017

ISO-NE PUBLIC

Transmission Provides Benefits Beyond Reliability

- Transmission has reduced or eliminated out-of-market costs:
 - Reliability agreements with certain generators that were needed to provide transmission support in weak areas of the electric grid
 - These often were older, less-efficient generating resources
 - Uplift charges to run specific generators to meet local reliability needs
- The markets are increasingly competitive: Easing transmission constraints into import-constrained areas has enabled the ISO to dispatch the most economic resources throughout the region to meet customer demands for electricity

ISO-NE PUBLIC

- Transmission congestion has been nearly eliminated
- Transmission facilitates resource transformation: Transmission upgrades have allowed older, lessefficient resources to retire, which helps the states achieve their environmental objectives

Transmission and Resource Developments Have Reduced Energy and Reliability Costs

Fuel-Supply Challenges Have Been Significant in Recent Winters

- New England has experienced volatile natural gas and wholesale electricity prices in recent winters due to constraints on the interstate natural gas pipeline system
 - The ISO has frequently operated with little or no gas-fired generation
 - High natural gas prices have made many oil-fired generators economic
- Gas pipelines have been **constrained** even without significant use by gas-fired generators, and more constrained than expected
- The region has benefitted from the **availability of LNG resources**, but shipments of LNG to the region will depend on world LNG prices
- Oil has been vitally important to **reliability** and will remain important as long as the region faces a constrained natural gas system; the oil supply chain, however, has been increasingly constrained

Winter Reliability Program Update

- For the past three winters, ISO New England has administered a **Winter Reliability Program** to address challenges created by the region's constrained interstate natural gas pipeline system
- In September 2015, FERC approved a program to be in place for the 2015/2016, 2016/2017, and 2017/2018 winters, providing compensation for:

ISO-NE PUBLIC

- 1. Carrying costs of fuel oil that was unused at the end of the winter;
- 2. Unused liquefied natural gas contract volumes; and
- 3. Supplemental demand response

ISO New England Will Run the Eleventh Forward Capacity Auction (FCA #11) in February 2017

- FCA #11 will begin on February 6, 2017 to procure the capacity resources needed for the 2020-2021 Capacity Commitment Period
- On November 8, 2016, ISO New England submitted an informational filing to FERC regarding the qualification of resources for FCA #11
- The filing also included locational capacity requirements based upon the topology of the transmission system, and specifically which capacity zones are to be modeled in the auction

Source: ISO Filings to FERC; <u>https://www.iso-ne.com/participate/filings-orders/ferc-filings</u>

Forward Capacity Auction #11 at a Glance

- The net Installed Capacity Requirement to be procured in the auction is **34,075 MW**
- The ISO qualified 34,505 MW of existing capacity resources and 5,958 MW of new capacity resources to participate in the auction

Rest-of-Pool Zone

(WCMA and CT)

ISO-NE PUBLIC

- The ISO will model **three** capacity zones in FCA #11
 - Northern New England Capacity Zone
 - Export-Constrained
 - Southeastern New England Capacity Zone
 - Import-Constrained
 - Rest-of-Pool Capacity Zone

Northern New England Zone

(VT, NH and ME)

Southeastern New England Zone

(NEMA/Boston