2017 Economic Study Request

Study to Explore Least-Cost, Emissions-Compliant System Topologies

David Ismay

Senior Attorney

Conservation Law Foundation

ISO-NE Planning Advisory Committee
April 19, 2017

- Request Guidelines
- CLF's Request
- Value Proposition

Request Guidelines

"The ISO's stakeholders may request the ISO to initiate a Needs Assessment to examine situations where **potential** regulated transmission solutions or market responses or investments could result in (i) a net reduction in total production cost to supply system load based on the factors specified in Attachment N of this OATT, (ii) reduced congestion, or (iii) the integration of new resources and/or loads on an aggregate or regional basis (an 'Economic Study')."

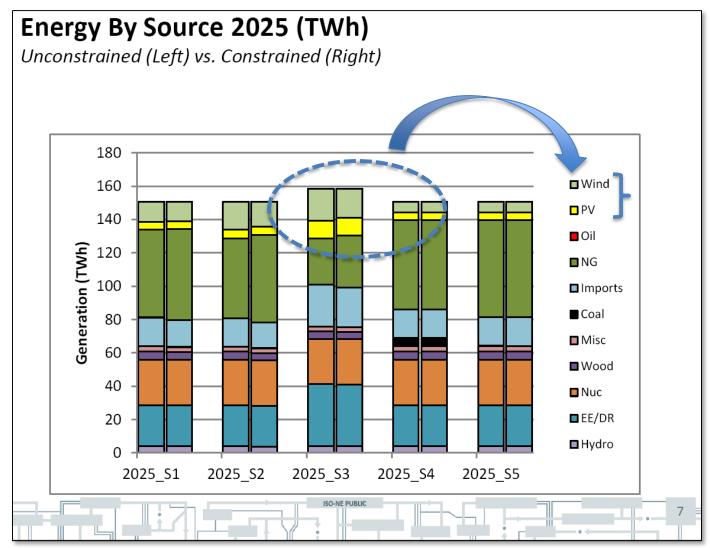
Attachment K, Section 4.1(b) of the Tariff

- Request Guidelines
- CLF's Request
- Value Proposition

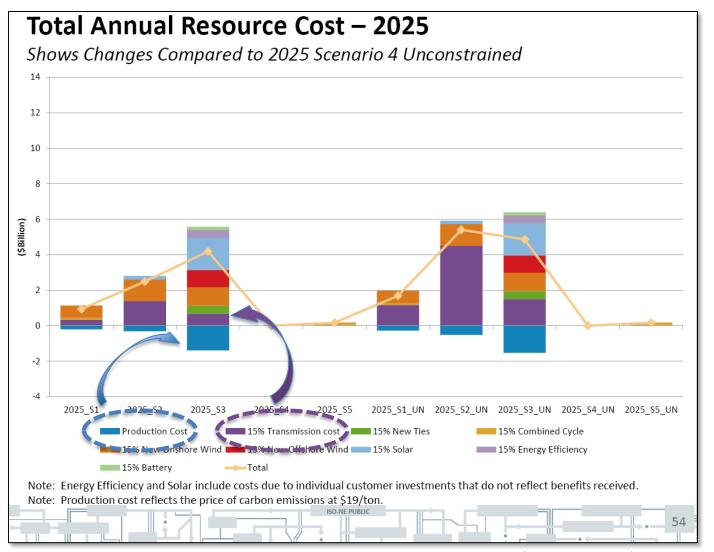
Study to Explore Least-Cost, Emissions-Compliant System Topologies

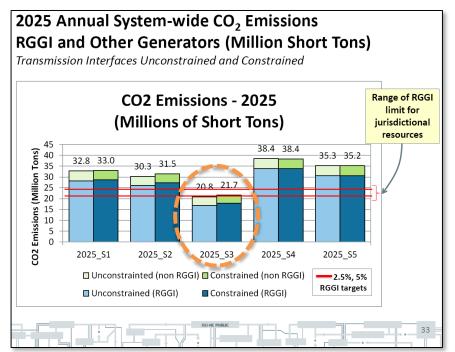
As a continuation of its 2016 Economic Study analysis, ISO-NE develop and price at least two new system topologies (of generation and transmission) for 2025 and 2030 that have total system CO₂ emissions at or below the average system emissions levels of Scenario 3 (the "RPS-plus scenario") of the 2016 Economic Study.

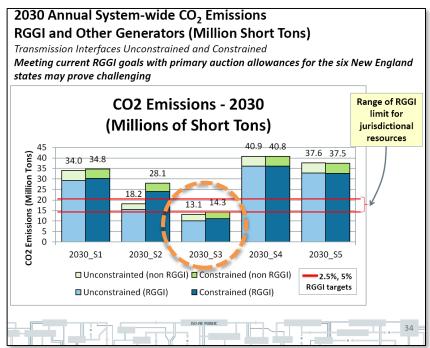
Goal:


To determine whether there are viable system topologies other than those analyzed in Scenario 3 with similar total system emissions (~ 20M tons in 2025; ~15M tons in 2030) but at a lower Total Annual Resource Cost than has been projected for Scenario 3.

Meets Section 4.1(b) requirements:


- Emissions compliant scenarios likely to lead to a "net reduction in total production cost to supply system load"
- Examine need for new regional TX to "reduce[] congestion" in emissions-compliant scenarios
- Examine situation involving "the integration of [substantial] new resources and/or loads on an aggregate or regional basis."
 - → Draft 2016 Econ. Study Results, Scenario 3 ←



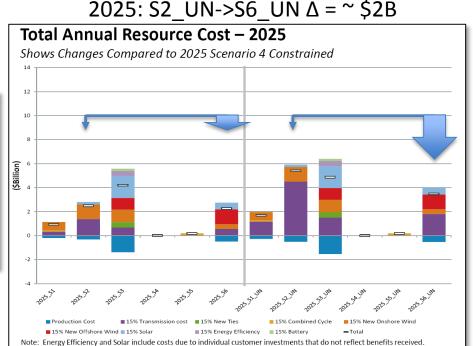


2016 Economic Studies Executive Summary Supplement (Nov. 29, 2016)

- Request Guidelines
- CLF's Request
- Value Proposition

2016 Economic Studies Executive Summary Supplement (Nov. 29, 2016)

Shift in Focus → Exploring and understanding future grid topologies that comply with existing state law (RPS; RGGI; GWSA)



Build on learning from 2016 Econ. Study:

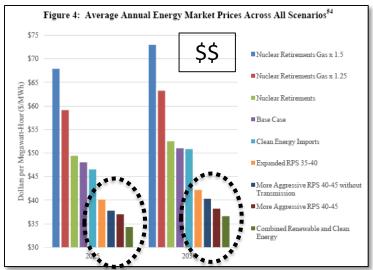
2025: S2->S6 Δ = \sim 0.1% MW

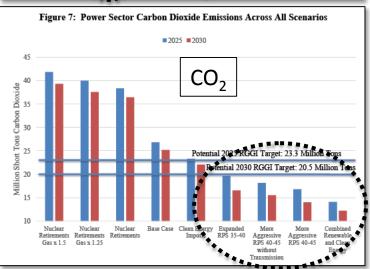
Scenario	PV (MW)	EE (MW)	On-Shore Wind (MW)	Off-Shore Wind (MW)	New NG Units (MW)	HQ and NB External Ties (MW)	Battery (MW)
2	505 (2025)	0 (2025)	3,306 (2025)	0 (2025)	0 (2025)	0 (2025)	0 (2025)
	2,804 (2030)	895 (2030)	12,973 (2030)	1,219 (2030)	0 (2030)	0 (2030)	0 (2030)
6	1,458 (2025)	0 (2025)	1,077 (2025)	1,270 (2025)	0 (2025)	0 (2025)	0 (2025)
	6,832 (2030)	895 (2030)	5,798 (2030)	5,370 (2030)	0 (2030)	0 (2030)	0 (2030)

2016 Economic Studies Executive Summary Supplement (Nov. 29, 2016)

2016 Economic Studies Executive Summary Supplement (Nov. 29, 2016)

Note: Production cost reflects the price of carbon emissions at \$19/ton


Results are meaningfully sensitive to changes in topology



Broaden range of compliant topologies; different cost impacts

Table F: Overview of Scenario Assumption Details					
Scenario	2025	2030			
1: Expanded RPS 35%-40%	+ 2,750 MW On-Shore Wind	+3,575 MW On-Shore Wind			
("Expanded")	(+2,400 MW HVDC)	(+2,400 MW HVDC)			
*** ** \	+ 600 MW Solar PV	+1,000 MW Solar PV			
	+1,500 MW Off-Shore Wind	+2,000 MW Off-Shore Wind			
2: More Aggressive RPS	+4,250 MW On-Shore Wind	+5,500 MW On-Shore Wind			
40%-45% ("Aggressive")	(+3,600 MW HVDC)	(+3,600 MW HVDC)			
	+1,000 MW Solar PV	+1,250 MW Solar PV			
	+2,000 MW Off-Shore Wind	+2,500 MW Off-Shore Wind			
3: Clean Energy Imports	+7,800 GWh Clean Energy	+7,800 GWh Clean Energy			
("Imports")	(+1,000 MW HVDC)	(+1,000 MW HVDC)			
A.A.	(90% Capacity Factor)	(90% Capacity Factor)			
4: Combined Renewable	+4,250 MW On-Shore Wind	+5,500 MW On-Shore Wind			
and Clean Energy	(+3,600 MW HVDC)	(+3,600 MW HVDC)			
("Combined")	+1,000 MW Solar PV	+1,250 MW Solar PV			
村村為人	+2,000 MW Off-Shore Wind	+2,500 MW Off-Shore Wind			
	+7,800 GWh Clean Energy	+7,800 GWh Clean Energy			
	(+1,000 MW HVDC)	(+1,000 MW HVDC)			
	,	,			
5: Nuclear Retirements	Retire remaining nuclear	Retire remaining nuclear			
("No Nuclear")	resources by 2025;	resources by 2025;			
	Nuclear resources replaced by	Nuclear resources replaced			
	gas-fired resources	by gas-fired resources			
6: Expanded RPS Without	+4,250 MW On-Shore Wind	+5,500 MW On-Shore Wind			
Transmission	(+3,600 MW HVDC)	(+3,600 MW HVDC)			
("No Transmission")	+1,000 MW Solar PV	+1,250 MW Solar PV			
	+2,000 MW Off-Shore Wind	+2,500 MW Off-Shore Wind			

- Little/no value in modeling non-compliant systems
 - No different than reliability . . .
- Lots of value in exploring various emissions-compliant topologies
 - Directly impacts costs, operability, TX . . .
- A wealth of information for ISO-NE to work with
 - 2016 Econ. Study, Scenario 3
 - NESCOE 2017 Scenario Analysis
 - Others (e.g., 2014 U.S. Pathways to Deep Decarbonization)
- > Direct impact on/contribution to IMAPP effort
 - Expand range of compliant mixes for market to deliver
 - Address many issues raised in Apr. 7, 2017 NESCOE Memo

