Locational Marginal Prices & Interface Flows

2016 Historical Market and Operational Data
Overview

• Average Real-Time Locational Marginal Prices by RSP subarea
 – Hourly dollars per MWh
 – May contain differences from Market Reports due to rounding, precision, and definition

• Interfaces Flows
 – Monthly Box Plots
 – Duration Curves

• Market Information is summarized in other ISO-NE publications, such as the Annual Market Report
 – https://www.iso-ne.com/markets-operations/market-monitoring-mitigation/internal-monitor

• Presentation is intended to show general trends in real-time data
 – Anomalies within a trend are usually due to short-term events (e.g. a generator or line outage)

• Real-time data is subject to aberrations and missing data
New England Subarea Model
Box Plots & Duration Curves for Selected Interfaces

- Boston Import
- SEMA/Rhode Island Export
- Maine-New Hampshire
- Connecticut Import
- Western Connecticut Import
- Southwest Connecticut Import
- Norwalk-Stamford
- Orrington South
- Surowiec South
- East-West New England
- North-South New England
- HQ Phase II
- New Brunswick
- New England-New York Cross Sound Cable
- New England-New York Northport
- New England-New York Northern AC Ties
Interface Notes

• Metered Hourly Net Flows for HQ Phase II, New Brunswick, and the New York Northern AC Ties can be found on the ISO-NE website

• Limits for interfaces are dynamic and are calculated in real time by the Interface Limit Calculator

• Flows and Limits for interfaces from 2010 – 2015 are available on the ISO-NE website. Data for 2016 will be posted soon.
REAL-TIME LOCATIONAL MARGINAL PRICES

Hub and RSP Subareas
Real-Time Locational Marginal Prices
2016 Summary ($/MWh)

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean: Difference from Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub</td>
<td>28.94</td>
<td>34.05</td>
<td>-156.04</td>
<td>1438.97</td>
<td>0.00</td>
</tr>
<tr>
<td>BOSTON</td>
<td>29.72</td>
<td>35.00</td>
<td>-155.15</td>
<td>1447.10</td>
<td>0.78</td>
</tr>
<tr>
<td>CMA/NEMA</td>
<td>29.02</td>
<td>34.22</td>
<td>-155.69</td>
<td>1447.77</td>
<td>0.08</td>
</tr>
<tr>
<td>WMA</td>
<td>28.93</td>
<td>33.84</td>
<td>-157.58</td>
<td>1429.39</td>
<td>-0.01</td>
</tr>
<tr>
<td>SEMA</td>
<td>29.05</td>
<td>34.40</td>
<td>-155.76</td>
<td>1449.47</td>
<td>0.10</td>
</tr>
<tr>
<td>CT</td>
<td>28.97</td>
<td>34.05</td>
<td>-157.34</td>
<td>1443.39</td>
<td>0.03</td>
</tr>
<tr>
<td>SWCT</td>
<td>29.03</td>
<td>34.03</td>
<td>-159.12</td>
<td>1442.43</td>
<td>0.08</td>
</tr>
<tr>
<td>NOR</td>
<td>29.04</td>
<td>34.16</td>
<td>-159.72</td>
<td>1451.33</td>
<td>0.10</td>
</tr>
<tr>
<td>VT</td>
<td>28.64</td>
<td>33.53</td>
<td>-156.28</td>
<td>1427.78</td>
<td>-0.30</td>
</tr>
<tr>
<td>NH</td>
<td>28.53</td>
<td>33.17</td>
<td>-153.90</td>
<td>1418.07</td>
<td>-0.41</td>
</tr>
<tr>
<td>RI</td>
<td>28.88</td>
<td>34.07</td>
<td>-155.68</td>
<td>1439.23</td>
<td>-0.06</td>
</tr>
<tr>
<td>BHE</td>
<td>26.24</td>
<td>31.31</td>
<td>-150.66</td>
<td>1341.01</td>
<td>-2.70</td>
</tr>
<tr>
<td>SME</td>
<td>28.25</td>
<td>32.59</td>
<td>-153.47</td>
<td>1394.68</td>
<td>-0.69</td>
</tr>
<tr>
<td>ME</td>
<td>27.88</td>
<td>31.90</td>
<td>-151.52</td>
<td>1367.80</td>
<td>-1.06</td>
</tr>
</tbody>
</table>
Real-Time Locational Marginal Prices

2016 Summary of Congestion Component ($/MWh)

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean: Difference from Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub</td>
<td>-0.11</td>
<td>1.69</td>
<td>-68.00</td>
<td>23.42</td>
<td>0.00</td>
</tr>
<tr>
<td>BOSTON</td>
<td>0.58</td>
<td>4.77</td>
<td>-6.71</td>
<td>105.03</td>
<td>0.69</td>
</tr>
<tr>
<td>CMA/NEMA</td>
<td>-0.10</td>
<td>1.64</td>
<td>-72.50</td>
<td>27.85</td>
<td>0.01</td>
</tr>
<tr>
<td>WMA</td>
<td>-0.11</td>
<td>1.35</td>
<td>-28.66</td>
<td>10.21</td>
<td>0.00</td>
</tr>
<tr>
<td>SEMA</td>
<td>-0.07</td>
<td>1.96</td>
<td>-82.10</td>
<td>33.91</td>
<td>0.04</td>
</tr>
<tr>
<td>CT</td>
<td>-0.09</td>
<td>1.27</td>
<td>-20.22</td>
<td>13.95</td>
<td>0.03</td>
</tr>
<tr>
<td>SWCT</td>
<td>-0.07</td>
<td>1.56</td>
<td>-20.22</td>
<td>74.96</td>
<td>0.04</td>
</tr>
<tr>
<td>NOR</td>
<td>-0.07</td>
<td>1.59</td>
<td>-20.22</td>
<td>74.95</td>
<td>0.04</td>
</tr>
<tr>
<td>VT</td>
<td>-0.24</td>
<td>1.63</td>
<td>-40.33</td>
<td>43.72</td>
<td>-0.13</td>
</tr>
<tr>
<td>NH</td>
<td>-0.28</td>
<td>2.62</td>
<td>-119.46</td>
<td>4.44</td>
<td>-0.17</td>
</tr>
<tr>
<td>RI</td>
<td>-0.10</td>
<td>1.94</td>
<td>-89.96</td>
<td>29.08</td>
<td>0.02</td>
</tr>
<tr>
<td>BHE</td>
<td>-1.52</td>
<td>10.31</td>
<td>-200.46</td>
<td>5.18</td>
<td>-1.41</td>
</tr>
<tr>
<td>SME</td>
<td>-0.27</td>
<td>3.27</td>
<td>-151.90</td>
<td>5.20</td>
<td>-0.16</td>
</tr>
<tr>
<td>ME</td>
<td>-0.30</td>
<td>3.26</td>
<td>-151.10</td>
<td>5.12</td>
<td>-0.19</td>
</tr>
</tbody>
</table>
Real-Time Locational Marginal Prices

2016 Summary of Loss Component ($/MWh)

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean: Difference from Hub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub</td>
<td>0.08</td>
<td>0.20</td>
<td>-1.35</td>
<td>7.21</td>
<td>0.00</td>
</tr>
<tr>
<td>BOSTON</td>
<td>0.16</td>
<td>0.38</td>
<td>-0.96</td>
<td>14.67</td>
<td>0.09</td>
</tr>
<tr>
<td>CMA/NEMA</td>
<td>0.14</td>
<td>0.33</td>
<td>-0.85</td>
<td>15.07</td>
<td>0.07</td>
</tr>
<tr>
<td>WMA</td>
<td>0.06</td>
<td>0.28</td>
<td>-6.30</td>
<td>2.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>SEMA</td>
<td>0.14</td>
<td>0.52</td>
<td>-1.24</td>
<td>21.66</td>
<td>0.07</td>
</tr>
<tr>
<td>CT</td>
<td>0.08</td>
<td>0.33</td>
<td>-3.78</td>
<td>7.73</td>
<td>0.00</td>
</tr>
<tr>
<td>SWCT</td>
<td>0.12</td>
<td>0.51</td>
<td>-5.59</td>
<td>6.77</td>
<td>0.04</td>
</tr>
<tr>
<td>NOR</td>
<td>0.13</td>
<td>0.64</td>
<td>-5.41</td>
<td>15.67</td>
<td>0.06</td>
</tr>
<tr>
<td>VT</td>
<td>-0.10</td>
<td>0.43</td>
<td>-12.74</td>
<td>2.12</td>
<td>-0.17</td>
</tr>
<tr>
<td>NH</td>
<td>-0.17</td>
<td>0.55</td>
<td>-21.75</td>
<td>3.48</td>
<td>-0.25</td>
</tr>
<tr>
<td>RI</td>
<td>0.00</td>
<td>0.26</td>
<td>-1.89</td>
<td>7.37</td>
<td>-0.07</td>
</tr>
<tr>
<td>BHE</td>
<td>-1.21</td>
<td>2.67</td>
<td>-126.72</td>
<td>12.57</td>
<td>-1.28</td>
</tr>
<tr>
<td>SME</td>
<td>-0.46</td>
<td>1.16</td>
<td>-52.59</td>
<td>5.04</td>
<td>-0.53</td>
</tr>
<tr>
<td>ME</td>
<td>-0.80</td>
<td>1.89</td>
<td>-88.14</td>
<td>7.72</td>
<td>-0.88</td>
</tr>
</tbody>
</table>
Average Real-Time Locational Marginal Prices

$/MWh

Hub BOSTON CMA/NEMA WMA SEMA CT SWCT NOR VT NH RI BHE ME SME

ISO-NE PUBLIC
Average Real-Time Locational Marginal Prices

Difference from Hub

|$/MWh|

-8 -6 -4 -2 0 2 4

BOSTON CMA/NEMA WMA SEMA CT SWCT NOR VT NH RI BHE ME SME

ISO-NE PUBLIC
Average Real-Time Locational Marginal Prices

Difference from Hub: Congestion Component
Average Real-Time Locational Marginal Prices

Difference from Hub: Loss Component

$/MWh

BOSTON CMA/NEMA WMA SEMA CT SWCT NOR VT NH RI BHE ME SME
Monthly Average Real-Time Locational Marginal Prices at Hub

$/MWh

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

INTERFACE DESCRIPTIONS
Interface Descriptions

Internal Interfaces

• The Boston Import interface surrounds the northeastern area of Massachusetts, from the New Hampshire/Massachusetts border to just south of Boston. A positive sign indicates power flow into Northeastern Massachusetts/Boston from the rest of New England.

• The Southeastern Massachusetts/Rhode Island (SEMA/RI) export interface surrounds Massachusetts south of Boston and all of the state of Rhode Island. The western edge of the interface is the same as parts of the East-West and Boston Import interfaces. A positive sign indicates power flow into the rest of New England from SEMA/RI.

• The Maine-New Hampshire interface runs across part of southern Maine. A positive sign on the data indicates power flow from Maine to New Hampshire.
Interface Descriptions

Internal Interfaces

- The Connecticut Import interface surrounds most of the state of Connecticut. A positive sign indicates power flow into Connecticut from the rest of New England.

- The Western Connecticut Import interface is generally west of the Connecticut river, excluding the Hartford area. A positive sign on the data indicates power flow from East to West.

- The Southwest Connecticut Import interface surrounds the southwestern corner of Connecticut. A positive sign indicates power flow into southwest Connecticut.
Interface Descriptions

Internal Interfaces

• The Norwalk-Stamford interface surrounds the extreme southwestern portion of southwest Connecticut, and lies within the Southwest Connecticut Import interface. A positive sign indicates power flow into the region.

• The Orrington South interface separates the areas north and east of Bangor from the rest of Maine. A positive sign indicates a southwest power flow towards Portland.

• The Surowiec South interface is just northeast of Portland, and lies across the lines going southwest from Maine Yankee, roughly separating southern Maine from the rest of the state. A positive sign indicates power flow into the Southern-Maine subarea.
Interface Descriptions

Internal Interfaces

- The East-West interface runs south from northern Vermont, through central Massachusetts, and through Connecticut just west of the Rhode Island border. A positive sign on the data indicates power flow from East to West.

- The North-South interface runs across the southern borders of New Hampshire and Vermont, dividing the ISO-NE area into two separate three-state regions. A positive sign on the data indicates power flow from North to South.
Interface Descriptions

External Interfaces

- The New Brunswick interface connects New England to the Maritimes. A positive sign indicates power flow from New England to the Maritimes.

- The HQ Phase II interface connects New England to the Hydro Quebec System. A positive sign indicates power flow from New England to HQ.

- The New York-New England interface runs along the border between the New England Control Area and the New York Control Area. This interface is shown as (1) the Cross Sound Cable-central CT to Long Island, (2) Norwalk CT-Northport Long Island, and (3) the NY-Northern AC ties. A positive sign on the data indicates power flow from New England to New York.
Interface Details

• On-peak hours are defined as non-holiday weekdays from hours ending 8 AM to 11 PM.

• For a technical description of the interfaces see the “Generic Interface Constraints” spreadsheet:
 – http://isoweb.iso-ne.com/transmission_system_information/Generic%20Interface%20Constraints/
2016 INTERFACE FLOWS

Monthly Boxplots
Boxplot Key

- **Mean**: 50th Percentile (Median)
- **Interquartile Range (IQR)**: Middle 50% of Distribution
- **1st Quartile - 1.5 * IQR**
- **25th Percentile (1st Quartile)**
- **75th Percentile (3rd Quartile)**
- **3rd Quartile + 1.5 * IQR**
- **Outliers**
New Brunswick

Summary Flow Statistics by Month

Positive values indicate power flowing out of New England
Orrington South

Summary Flow Statistics by Month

*Positive values indicate power flowing into the Maine subarea
Surowiec South

Summary Flow Statistics by Month

Positive values indicate power flowing into the Southern Maine subarea
Maine to New Hampshire

Summary Flow Statistics by Month

![Box plot diagram showing monthly power flow statistics from Maine to New Hampshire. Positive values indicate power flowing into New Hampshire.](image)

Positive values indicate power flowing into New Hampshire.
Boston Import

Summary Flow Statistics by Month

Positive values indicate power flowing into Boston
SEMA/Rhode Island

Summary Flow Statistics by Month

*Positive values indicate power flowing out of SEMA/Rhode Island
Connecticut Import

Positive values indicate power flowing into Connecticut
Western Connecticut Import

Summary Flow Statistics by Month

*Positive values indicate power flowing into Western Connecticut
Southwest Connecticut

Summary Flow Statistics by Month

Positive values indicate power flowing into Southwest Connecticut
Norwalk-Stamford

Summary Flow Statistics by Month

Positive values indicate power flowing into Norwalk-Stamford
East to West New England

Summary Flow Statistics by Month

*Positive values indicate power flowing West
North to South New England

Summary Flow Statistics by Month

Positive values indicate power flowing South
HQ Phase II

Summary Flow Statistics by Month

Positive values indicate power flowing out of New England
New York: Cross Sound Cable

Summary Flow Statistics by Month

Positive values indicate power flowing out of New England
New York: Northport

Summary Flow Statistics by Month

*Positive values indicate power flowing out of New England
New York: Northern AC Ties

Summary Flow Statistics by Month

Flow Across Interface (MW)

Positive values indicate power flowing out of New England
2016 INTERFACE FLOWS

Annual Duration Curves
New Brunswick Duration Curve

All Hours

*Positive values indicate power flowing out of New England
New Brunswick Duration Curve

On/Off Peak Hours

*Positive values indicate power flowing out of New England
Orrington South Duration Curve

Positive values indicate power flowing into the Maine subarea
Orrington South Duration Curve

Net Flow as a % of Interface Limit

*Positive values indicate power flowing into the Maine subarea
Surowiec South Duration Curve

Positive values indicate power flowing into the Southern Maine subarea
Surowiec South Duration Curve

Net Flow as a % of Interface Limit

Positive values indicate power flowing into the Southern Maine subarea
Maine to New Hampshire Duration Curve

All Hours

*Positive values indicate power flowing into New Hampshire
Maine to New Hampshire Duration Curve

Net Flow as a % of Interface Limit

*Positive values indicate power flowing into New Hampshire
Boston Import Duration Curve

All Hours

*Positive values indicate power flowing into Boston
Boston Import Duration Curve

Net Flow as a % of Interface Limit

*Positive values indicate power flowing into Boston
SEMA/Rhode Island Duration Curve

All Hours

Positive values indicate power flowing out of SEMA/Rhode Island
SEMA/Rhode Island Duration Curve

On/Off Peak Hours

Positive values indicate power flowing out of SEMA/Rhode Island
Connecticut Import Duration Curve

All Hours

*Positive values indicate power flowing into Connecticut
Connecticut Import Duration Curve

On/Off Peak Hours

Positive values indicate power flowing into Connecticut
Western Connecticut Import Duration Curve

All Hours

*Positive values indicate power flowing into Western Connecticut
Western Connecticut Import Duration Curve

Net Flow as a % of Interface Limit

*Positive values indicate power flowing into West Connecticut
Southwest Connecticut Duration Curve

All Hours

*Positive values indicate power flowing into Southwest Connecticut
Southwest Connecticut Duration Curve

Net Flow as a % of Interface Limit

*Positive values indicate power flowing into Southwest Connecticut
Norwalk-Stamford Duration Curve

All Hours

*Positive values indicate power flowing into Norwalk-Stamford
Norwalk-Stamford Duration Curve

Net Flow as a % of Interface Limit

*Positive values indicate power flowing into Norwalk-Stamford
East to West New England Duration Curve

All Hours

*Positive values indicate power flowing West
East to West New England Duration Curve

Net Flow as a % of Interface Limit

Positive values indicate power flowing West
North to South New England Duration Curve

*Positive values indicate power flowing South
North to South New England Duration Curve

Net Flow as a % of Interface Limit

Positive values indicate power flowing South
HQ Phase II Duration Curve

All Hours

Positive values indicate power flowing out of New England
HQ Phase II Duration Curve

On/Off Peak Hours

Positive values indicate power flowing out of New England
New York: Cross Sound Cable Duration Curve

All Hours

*Positive values indicate power flowing out of New England
New York: Cross Sound Cable Duration Curve

Positive values indicate power flowing out of New England
New York: Northport Duration Curve

All Hours

*Positive values indicate power flowing out of New England
New York: Northport Duration Curve

On/Off Peak Hours

Positive values indicate power flowing out of New England
New York: Northern Ties Duration Curve

All Hours

*Positive values indicate power flowing out of New England
New York: Northern AC Ties Duration Curve

On/Off Peak Hours

Positive values indicate power flowing out of New England
Observations

• The small Congestion Component of the Locational Marginal Prices suggests there is little congestion on these interfaces

• In general, interface flows operate closer to the limit during on-peak hours as opposed to off-peak hours

• Portions of the system that are remote from load centers, especially northern Maine, have high negative loss components