

Future Representative Capacity Requirements for CCP 2022-2023 through CCP 2026-2027

- Net Installed Capacity Requirements (NICR)
- Local Sourcing Requirements (LSR)
- Maximum Capacity Limit (MCL)

Manasa Kotha

BACKGROUND - NICR for RSP17

- The 2017 Regional System Plan (RSP17) covers Net Installed Capacity Requirement (NICR) values for 2017 through 2026
- NICR values for Capacity Commitment Period (CCP) 2017-2018 through CCP 2020-2021 reflect the latest values that were filed and approved by FERC
- NICR values for CCP 2021-2022 are currently under development, in other words: 'to be determined' (TBD)
- NICR values for CCP 2022-2023 through CCP 2026-2027 reflect Representative ICR values that ISO-NE has calculated and are being presented to you today

Recap - Actual NICR Values for CCP 2020-2021

- The actual NICR, Local Sourcing Requirement (LSR), and Maximum Capacity Limit (MCL) calculated for the Forward Capacity Auction #11 (FCA #11) were based on the 2016 Capacity, Energy Loads and Transmission Report (CELT) load forecast and capacity and transmission assumptions reviewed by the Power Supply Planning Committee and Reliability Committee
- Three Capacity Zones were modeled for FCA#11
 - The Southeast New England (SENE) import-constrained Capacity Zone comprised of NEMA/Boston, SEMA and RI
 - The Northern New England (NNE) export-constrained Capacity Zone comprised of Maine, New Hampshire and Vermont
 - The rest-of-pool Capacity Zone comprised of Connecticut and Western/Central MA

Helpful Links:

- Summary of all ICR Values can be found on <u>ISO-NE website</u>
- Reliability Committee (RC)_presentation on the ICR Values for CCP 2020-2021 -FCA #11 is available here

Objective of this Power Point

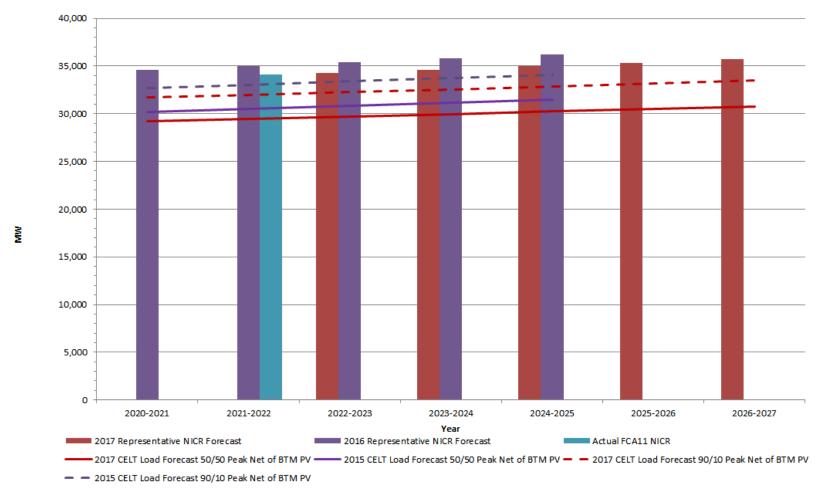
To present the Representative ICR Values* for the forecast period of CCP 2022-2023 through CCP 2026-2027 using the same capacity and transmission transfer capability assumptions used to develop ICR values for FCA #11 but with the 2017 CELT load forecast. The representative values include:

- Representative NICR
- Representative values for the SENE import-constrained
 Capacity Zone comprising:
 - Local Resource Adequacy (LRA) Requirements
 - Transmission Security Analysis (TSA) Requirements
 - Local Sourcing Requirements (LSR)
- Representative MCL values for NNE export-constrained
 Capacity Zone

^{*}For this presentation the ICR Values consist of ICR, NICR, LRA, TSA and MCL

Methodology and Assumptions

- The NICR Values (actual and representative) are calculated according to Market Rule 1 Section III.12 Calculation of Capacity Requirements, http://www.iso-ne.com/static-assets/documents/2014/12/mr1 sec 1 12.pdf
- Detailed capacity and transmission transfer capability assumptions are included in the Representative ICR Values Calculation Assumptions section


Net Installed Capacity Requirements

Status	ССР	CELT Forecast 50/50 Peak (MW) ^[a]		
А	2017-2018	28,571	33,138	16.0%
А	2018-2019	28,764	33,421	16.2%
А	2019-2020	28,970	33,755	16.5%
А	2020-2021	29,191	34,075	16.7%
	2021-2022		TBD [d]	
R	2022-2023	29,694	34,300	15.5%
R	2023-2024	29,960	34,600	15.6%
R	2024-2025	30,231	35,000	15.7%
R	2025-2026	30,507	35,300	15.8%
R	2026-2027	30,785	35,700	15.9%

- [a] The 2017 CELT forecast 50/50 peak loads reflect the load reduction associated with the behind-the-meter PV forecast (BTM PV) from the gross load forecast
- [b] NICR values for 2017-2018 to 2020-2021 are the latest values approved by FERC. These NICR values were developed using the 2016 CELT Report load forecast
- [c] The table shows the resulting reserves percentage calculated using the 2017 CELT Report load forecast. The resulting reserves percentage for 2017-2018 to 2020-2021, when calculated using their respective 2016 CELT Report loads, ranged from 15.0% to 15.1% (These values are not shown in the above table)
- [d] The NICR for 2021-2022 is under development and scheduled to be filed with FERC in November 2017

- Status field A: Actual Values, R: Representative Values
- The Representative NICR values are rounded to the nearest 100 MWs
- The resulting reserves increase through time because the contribution of capacity to meet the Loss of Load Expectation (LOLE) increases through time while the tie benefits contribution to meet the LOLE stays constant

Comparison of 2017 and 2016 NICR Forecasts

Note:

• This chart compares the Representative NICR forecast presented last year to the PAC on Jan 21, 2016 calculated with the 2015 load forecast versus the Representative NICR forecast with the 2017 load forecast

ICR Calculation Details (MW)

Total Capacity Breakdown	2020-2021 (FCA #11)	2021-2022	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
Generating Resources	31,375		31,375	31,375	31,375	31,375	31,375
Demand Resources	2,926		2,779	2,779	2,779	2,779	2,779
Import Resources	89		89	89	89	89	89
Tie Benefits	1,950	TBD	1,950	1,950	1,950	1,950	1,950
OP4 - Action 6 & 8 (Voltage Reduction)	437	100	442	447	451	456	461
Minimum Reserve Requirement	(200)		(200)	(200)	(200)	(200)	(200)
Proxy Unit Capacity	-		400	400	800	1,200	1,600
Total Capacity	36,576		36,835	36,840	37,244	37,649	38,054

Installed Capacity Requirement Calculation Details	2020-2021 (FCA #11)	2021-2022	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
Annual Peak	29,601		29,694	29,960	30,231	30,507	30,785
Total Capacity	36,576		36,835	36,840	37,244	37,649	38,054
Tie Benefits	1,950		1,950	1,950	1,950	1,950	1,950
HQICCs	959		959	959	959	959	959
OP4 - Action 6 & 8 (Voltage Reduction)	437	TBD	442	447	451	456	461
Minimum Operating Reserve Requirement	(200)		(200)	(200)	(200)	(200)	(200)
ALCC	273		291	10	53	88	130
Installed Capacity Requirement	35,034		35,265	35,590	35,940	36,300	36,651
NICR	34,075		34,306	34,631	34,981	35,341	35,692
Reserve Margin with HQICCs	18.4%		18.8%	18.8%	18.9%	19.0%	19.1%
Reserve Margin without HQICCs	15.1%		15.5%	15.6%	15.7%	15.8%	15.9%

$$Installed \ Capacity \ Requirement \ (ICR) = \frac{Capacity - Tie \ Benefits - OP4 \ Load \ Relief}{1 + \frac{ALCC}{APk}} + HQICCs$$

- ALCC is the "Additional Load Carrying Capability" used to bring the system to the 0.1 Days/Year LOLE reliability criterion
- ICR for 2021-2022 (FCA #12) is currently under development and shown as "To Be Determined (TBD)"

Summary of RSP 17 Capacity Zone Values

				LSR (MW)		MCL (MW)
Status	Commitment	nmitment Period		NEMA/ Boston	SEMA/RI	SENE	Maine	NNE
Α	2017-2018	FCA #8	7,319	3,428	N/A	N/A	3,960	N/A
Α	2018-2019	FCA #9	7,331	3,572	7,479	N/A	N/A	N/A
Α	2019-2020	FCA #10	N/A	N/A	N/A	10,028	N/A	N/A
Α	2020-2021	FCA #11	N/A	N/A	N/A	9,810	N/A	8,980
	2021-2022	FCA #12	N/A	N/A	N/A	TBD	N/A	TBD
R	2022-2023	FCA #13	N/A	N/A	N/A	10,200	N/A	8,950
R	2023-2024	FCA #14	N/A	N/A	N/A	10,400	N/A	9,000
R	2024-2025	FCA #15	N/A	N/A	N/A	10,550	N/A	9,050
R	2025-2026	FCA #16	N/A	N/A	N/A	10,750	N/A	9,150
R	2026-2027	FCA #17	N/A	N/A	N/A	10,900	N/A	9,250

- Status field A: Actual Values, R: Representative Values
- LSR and MCL for CCP 2021-2022 (FCA #12) is currently under development and shown as "To Be Determined (TBD)"
- The representative LSR and MCL values were rounded to the nearest 50 MW from the simulated values

SENE Requirements for CCP 2022-2023 through CCP 2026-2027 (MW)

Status	ССР	LRA	TSA	LSR			
А	2020-2021	9,580	9,810	9,810			
	2021-2022	TBD					
R	2022-2023	9,807	10,222	10,222			
R	2023-2024	10,014	10,390	10,390			
R	2024-2025	10,199	10,562	10,562			
R	2025-2026	10,468	10,738	10,738			
R	2026-2027	10,633	10,915	10,915			

- Status field A: Actual Values, R: Representative Values
- LRA/TSA for CCP 2021-2022 (FCA #12) is currently under development and shown as "To Be Determined (TBD)"
- LSR is determined as the higher of the LRA or TSA Requirement

SENE LRA Calculation Details

Southeast New England Ca	apacity Zone	2020-21 (FCA #11)	2021-2022	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
Resource,	[1]	11,403		11,365	11,365	11,365	11,365	11,365
Proxy Units,	[2]	0		0	0	0	0	0
Firm Load Adjustment,	[3]	1,669		1,428	1,238	1,070	824	673
FOR,	[4]	0.085		0.084	0.084	0.083	0.082	0.081
LRA,	[5]=[1]+[2]-([3]/(1-[4]))	9,580	TBD	9,807	10,014	10,199	10,468	10,633
Rest of New England Zone			IBU					
Resource	[6]	22,986		22,877	22,877	22,877	22,877	22,877
Proxy Units	[7]	0		400	400	800	1,200	1,600
Firm Load Adjustment	[8] = -[3]	-1,669		-1,428	-1,238	-1,070	-824	-673
Total System Resources	[9]=[1]+[2]-[3]+[6]+[7]-[8]	34,389		34,643	34,643	35,043	35,443	35,843

- All values in the table are in MW except the Forced Outage Rate (FOR,)
- ICR Values for 2021-2022 (FCA #12) is currently under development and shown as "To Be Determined (TBD)"

SENE TSA Calculation Details (MW)

TSA Requirement for SENE	2020-2021 FCA #11	2021-2022	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
Capacity Zone 90/10 Load	13,190		13,563	13,716	13,872	14,031	14,192
Reserves (Largest unit or loss of import capability)	1,413		1,413	1,413	1,413	1,413	1,413
Sub-area Transmission Security Need	14,603		14,976	15,129	15,285	15,444	15,605
Existing Resources	11,403	TBD	11,365	11,365	11,365	11,365	11,365
Assumed Unavailable Capacity	-1,054		-1,052	-1,052	-1,052	-1,052	-1,052
Sub-area N-1 Import Limit	5,700		5,700	5,700	5,700	5,700	5,700
Sub-area Available Resources	16,049		16,014	16,014	16,014	16,014	16,014
TSA Requirement	9,810		10,222	10,390	10,562	10,738	10,915

Note:

• ICR Values for 2021-2022 (FCA #12) is currently under development and shown as "To Be Determined (TBD)"

NNE MCL Calculation Details (MW)

Rest of New England Zone		2020-21 (FCA #11)	2021-2022	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
Resource,	[1]	26,147		26,024	26,024	26,024	26,024	26,024
Proxy Units,	[2]	0		400	400	800	1,200	1,600
Surplus Capacity Adjustment,	[3]	305		430	140	202	277	339
Firm Load Adjustment,	[4]	671		550	590	630	700	752
FOR,	[5]	0.072		0.072	0.072	0.072	0.071	0.071
LRA,	[6]=[1]+[2]-([3]/(1-[5]))- ([4]/(1-[5]))	25,095	TBD	25,368	25,637	25,928	26,172	26,450
NNE Zone								
Resource	[7]	8,243		8,219	8,219	8,219	8,219	8,219
Proxy Units	[8]	0		0	0	0	0	0
Surplus Capacity Adjustme	nt [9] =-[3]	-305		-430	-140	-202	-277	-339
Firm Load Adjustment	[10] = -[4]	-671		-550	-590	-630	-700	-752
Total System Resources	[11]=[1]+[2]-[3]- [4]+[7]+[8]-[9]-[10]	34,389		34,643	34,643	35,043	35,443	35,843

Maximum Capaci	ity Limit - NNE							
Commitment Period		2020-21 (FCA #11)	2021-2022	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
NICR for New England	[1]	34,075		34,306	34,631	34,981	35,341	35,692
LRA _{RestofNewEngland}	[2]	25,095	TBD	25,368	25,637	25,928	26,172	26,450
	[3]=[1]-[2]	8,980		8,938	8,994	9,054	9,169	9,242

- All values in the table are in MW except the Forced Outage Rate (FOR_z)
- ICR Values for 2021-2022 (FCA #12) is currently under development and shown as "To Be Determined (TBD)"

REPRESENTATIVE ICR VALUES CALCULATION ASSUMPTIONS

Load Forecast

- 2017 CELT Load Forecast was used to calculate Representative ICR Values
- The load forecast used is net of the "Behind the Meter- Photovoltaic"
 (BTM PV) resources forecast. The load forecast used is labeled in the
 2017 CELT Report as "1.2 REFERENCE With reduction for BTM PV"
- The Energy Efficiency forecast is not included since this is a forecast of passive Demand Resources which are expected to be part of the Forward Capacity Market (FCM) in the future and will, as such, be modeled as a supply-side capacity resource in the ICR calculations

ISO-NE PUBLIC

Modeling of BTM PV in the Representative ICR Values (MW)

Month	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
Jun	926	961	990	1,013	1,033
Jul	929	963	992	1,014	1,035
Aug	933	966	994	1,016	1,037
Sep	936	969	996	1,018	1,039
Oct	0	0	0	0	0
Nov	0	0	0	0	0
Dec	0	0	0	0	0
Jan	0	0	0	0	0
Feb	0	0	0	0	0
Mar	0	0	0	0	0
Apr	0	0	0	0	0
May	959	988	1,011	1,032	1,053

Estimated Summer Seasonal Peak Load	21.0	21.7	30.6	30.1	29.6
Reduction - % of BTM AC Nameplate (%)	51.9	51.2	30.6	50.1	29.0

- Table shows the monthly estimated peak load reduction. These are the values of BTM PV subtracted from the gross load forecast to determine the net load forecast in the 2017 CELT
 - includes 8% Transmission & Distribution Gross-up
- In the TSA, the published 90/10 net load forecast for the SENE sub-areas are used

Note:

Future net load scenarios are based on coincident, historical hourly load and PV production data for the years 2012-2015. For more info, see https://www.iso-ne.com/static-assets/documents/2017/05/2017_solar_forecast_details_final.pdf

Load Forecast Data – Applicable 50/50 & 90/10 Load Forecast for New England & Sub-areas (MW)

Peak Load Forecast Net of BTM PV										
	New England	SI	NNE							
ССР	50/50	50/50	90/10	50/50						
2022-2023	29,694	12,459	13,563	5,761						
2023-2024	29,960	12,593	13,716	5,810						
2024-2025	30,231	12,731	13,872	5,859						
2025-2026	30,507	12,872	14,031	5,907						
2026-2027	30,785	13,015	14,192	5,955						

- Load forecast is based on the 2017 CELT Report load forecast
- Capacity Zone load forecasts are the values for the Regional System Plan (RSP) sub-areas used as proxies for the Load Zone values as the interface Transmission Transfer Capability (TTC) limits are calculated using the 13 RSP sub-area representation
- 50/50 load forecast values shown for informational purposes. The GE Mars model sees a distribution of peak loads to calculate ICR and LRA
- 90/10 load forecast values shown are a direct input into the calculation of TSA for import-constrained Capacity Zones

Comparison of Sub-area Load Forecasts

- Comparisons of the 2017 versus the 2016 CELT load forecasts show that while the overall New England load forecast went down, the forecast for the SENE sub-areas has increased
- Some of the increase is due to changes in the operating company distribution of the load to the buses used in the Transmission Planning Network Model
 - The share of operating companies to the sub-areas is based on bus data provided by Transmission Owners
 - The 2017 CELT has more load moving into the Southeast Massachusetts (SEMA) sub-area than the 2016 CELT
- Some of the increase is also due to the Massachusetts economy growing faster relative to the other New England states
 - Gross State Product (GSP) in Massachusetts is expected to grow at a compound annual growth rate of 2.1% through the forecast horizon, more than any other New England state

LRA, TSA & MCL Internal Transmission Transfer Capability Assumptions (MW)

- Internal Transmission Transfer Capability
 - Southeast New England Import
 - N-1 Limit: 5,700
 - N-1-1 Limit: 4,600
 - Northern New England Export (North-South interface)
 - N-1 Limit: 2,725

- <u>Transmission transfer capability limits</u> presented at the Planning Advisory Committee (PAC) on March 22, 2017 (CEII)
- Includes The Greater Boston Upgrades the certification of this project to be in service by June 2019 has been accepted by ISO New England

Summary of Resource Assumptions for CCP 2022-2023 – CCP 2026-2027 (MW)

	ССР	Generating Resources	Intermittent Power Resources	Demand Resources	Import Resources	Total Resources
New England	2020-2021 (FCA #11)	30,469	906	2,926	89	34,389
New Eligialia	2022-2023 - 2026-2027	30,469	906	2,779	89	34,243

SENE	2020-2021 (FCA #11)	9,930	181	1,292	-	11,403
SEINE	2022-2023 - 2026-2027	9,930	181	1,254	-	11,365

NINIE	2020-2021 (FCA #11)	7,244	455	538	6	8,243
NNE	2022-2023 - 2026-2027	7,244	455	514	6	8,219

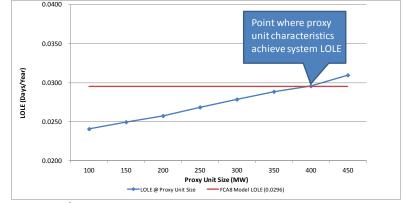
Note:

Removal of RTEG resources is reflected for the forecast period

TSA Resource Assumptions

Based on FCA #11 Resource Assumptions

- Resource Data based on FCA 11
 - CCP 2020-2021 Existing Capacity Qualification data
 - Generating capacity: 10,011 MW
 - Includes 8,950 MW of regular generation resources, 181 MW of intermittent generation resources and 980 MW of peaking generation resources
 - Passive Demand Resources: 1,109 MW
 - Active Demand Resources*: 144 MW


- *RTEG Qualified Capacity of 38 MWs has been removed from the calculations of future representative TSA
- All values have been rounded off to the nearest whole number

Proxy Unit Characteristics

Proxy unit characteristics based on a study conducted in 2014 using the

2017/18 FCA8 ICR Model

- Current proxy unit characteristics:
 - Proxy unit size equal to 400 MW
 - EFORd of proxy unit = 5.47%
 - Maintenance requirement = 4 weeks

 Proxy unit characteristics are determined using the average system availability and a series of LOLE calculations. By replacing all system capacity with the correct sized proxy units, the system LOLE and resulting capacity requirement unchanged

Note:

The 2014 Proxy Unit Study was reviewed at the May 22, 2014 PSPC Meeting and is available at:
 http://www.iso-ne.com/static-assets/documents/committees/comm_wkgrps/relblty_comm/pwrsuppln_comm/mtrls/2014/may222014/proxy_unit_2014_study.pdf

Summary of Resource Availability Assumptions -Based on the FCA #11 ICR Model

Resource Category	Summer MW	Assumed Average EFORd or FOR Weighted by Summer Ratings (%)	Assumed Average Maintenance Weeks Weighted by Summer Ratings	
Total System Generation	30,468.645	7.1	4.8	
Combined Cycle	14,399.224	3.8	5.1	
Fossil	6,088.065	17.5	5.9	
Nuclear	3,344.333	2.1	4.5	
Hydro (Includes Pumped Storage)	2,878.297	3.3	4.7	
Combustion Turbine	3,509.537	10.5	2.6	
Diesel	191.095	6.5	1.0	
Miscellaneous	58.094	17.6	3.0	
Intermittent Power Resources	906.179	0.0	0.0	
Import Resources	88.800	0.0	0.1	
Total Demand Resources	2,779.094	98.2	0.0	
On-Peak	1,865.731	0.0	0.0	
Seasonal Peak	485.409	0.0	0.0	
Real-time Demand Response	427.954	89.7	0.0	

- Generator EFORd is calculated as a 5-year average of the latest ISO submitted NERC GADS data
- Intermittent Power Resources are assumed as 100% available since their outage history is incorporated in their ratings
- Imports are modeled with historical tie line availability factors and deratings for firm capacity contracts
- FOR (for Demand Resources) is an assumed Forced Outage Rate based on historical performance of Demand Resources in summer & winter 2011 2015; RTEG resources have been removed for the forecast period

TSA Requirements Unavailability Assumptions

-Based on the FCA #11 TSA Requirement Calculation

- Resource Unavailability Assumptions
 - Regular Generation Resources Weighted average EFORd
 - SENE sub-area: 11%
 - Peaking Generation Resources adjustment factor: 20%
 - Passive Demand Resources: 0%
 - Active Demand Resources* De-rating based on performance factors
 - Boston sub-area: 14%
 - SEMA sub-area: 20%
 - RI sub-area: 21%

Note:

• All values have been rounded off to the nearest whole number

^{*}RTEG resources are removed in future Representative TSA calculations

OP 4 Assumptions (MW)

- Load Relief Available from 5% Summer Voltage Reduction (OP4 Actions 6 & 8)

ССР	Action 6 & 8 5% Voltage Reduction
2022-2023	442
LOLL LOLD	772
2023-2024	447
2024-2025	451
2025-2026	456
2026-2027	461

- Impact of implementing a 5% voltage reduction expressed as a percent of load is calculated using the ISO Operations value of 1.5%
- Calculated as [90-10 Peak Load Forecast] [all Passive DR & Active DR] *1.5%

OP 4 Assumptions (MW)

- Tie Benefits

The following Tie Benefit assumptions are used for the Representative NICR Calculations for CCPs 2022-2023 through 2026-2027

Control Area	2022-2023 - 2026-2027
Québec via Phase II	959
Québec via Highgate	145
Maritimes	500
New York	346
Total Tie Benefits	1,950

- Modeled with tie line availability assumptions
- The values are the same as those used for FCA #11

Summary of Resource and OP 4 Assumptions for (MW)

Type of Resource/OP4 Action	2020-2021 FCA #11	2021-2022	2022-2023	2023-2024	2024-2025	2025-2026	2026-2027
Generating Resources	30,599		30,599	30,599	30,599	30,599	30,599
Intermittent Power Resources	906		906	906	906	906	906
Demand Resources	2,926		2,779	2,779	2,779	2,779	2,779
Import Resources	89		89	89	89	89	89
Export Delist & Import Derating	(130)		(130)	(130)	(130)	(130)	(130)
OP 4 Voltage Reduction (Actions 6 & 8)	437	TBD	442	447	451	456	461
Minimum Operating Reserve	(200)		(200)	(200)	(200)	(200)	(200)
Tie Benefits (includes 959 MW HQICCs)	1,950		1,950	1,950	1,950	1,950	1,950
Proxy Units	-		400	400	800	1,200	1,600
Total MW Modeled in ICR	36,576		36,835	36,840	37,244	37,649	38,054

- Intermittent Power Resources have both the summer and winter capacity values modeled
- OP 4 5% Voltage Reduction includes both Action 6 and Action 8 MW assumptions
- Minimum Operating Reserve of 200 MW is the minimum Operating Reserve requirement for transmission system security
- RTEG resources are removed in forecast period
- ICR Values for 2021-2022 (FCA #12) are currently under development and shown as "To Be Determined (TBD)"

Questions

