

Maine (ME) 2027 Needs 20 years Assessment Scope of Work

Jinlin Zhang

LEAD ENGINEER | TRANSMISSION PLANNING

Purpose

 Present the Maine (ME) 2027 Needs Assessment Scope of Work

Overview

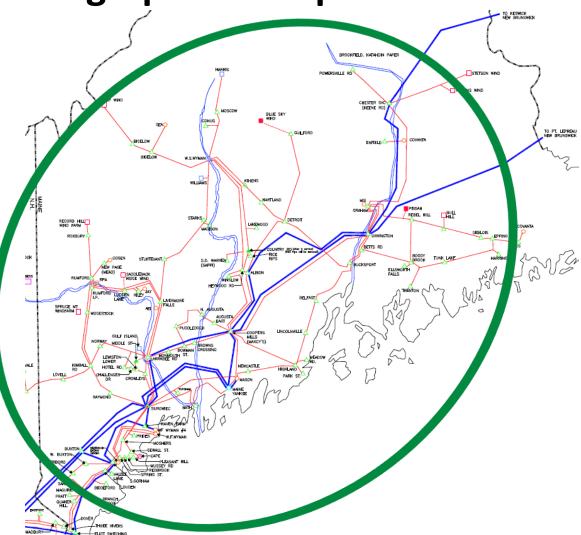
- Background
- Objectives
- Study area description
- Modeling assumptions
- Peak load dispatches and transfer levels
- Summary of peak load dispatches
- Minimum load assumptions and dispatches
- Short circuit assumptions
- Study methodology
- Schedule/Next steps

BACKGROUND

Background

- On June 29, 2017, the ISO posted a Notice of Initiation of the ME Needs Assessment
 - https://www.iso-ne.com/staticassets/documents/2017/06/2027 me needs assessment study initiation pac notice.
 pdf
- The triggers for the Needs Assessment are:
 - (i): "a need for additional transfer capability is identified by the ISO in its ongoing evaluation of the PTF's adequacy and performance."
 - (v): "as otherwise deemed appropriate by the ISO as warranting such an assessment."
- A ME 2023 Needs Assessment report was finalized December 2014, and an addendum report to the ME 2023 Needs Assessment report was finalized in April 2016. Efforts to develop solutions to address the ME time sensitive needs identified in the ME 2023 Needs Assessment addendum report were suspended in February of 2017 in order to accommodate a review of ISO-NE criteria, assumptions and methodologies that would likely impact the studies conducted for Needs Assessments and Solutions Studies. This review of ISO-NE criteria, assumptions and methodologies has sufficiently progressed to allow the initiation of a new Needs Assessment for the ME study area. The Needs Assessment will examine if needs still exist for the study area, and will identify the time-sensitivity of any identified needs

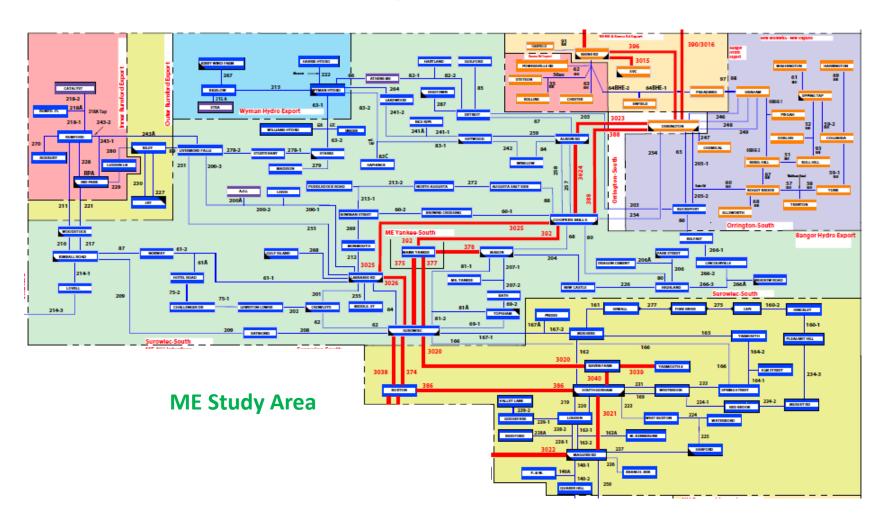
OBJECTIVES


Objectives

The objective of the Maine (ME) Needs Assessment study is to evaluate the reliability performance and identify reliability-based needs in the ME study area for the year 2027 while considering the following:

- Future load distribution
- Resource changes in New England based on FCA 11 results, 2017 PV forecast and 2017 EE forecast
- Reliability over a range of generation patterns and transfer levels
- Coordination with New Hampshire Needs Assessment
- All applicable North American Electric Reliability Corporation (NERC), Northeast Power Coordinating Corporation (NPCC) and ISO New England transmission planning reliability standards

STUDY AREA DESCRIPTION


ME Geographical Map

ME Study Area

The map is shown for reference only and does not include all of the latest topology changes.

Maine One Line Diagram

The diagram is shown for reference only and does not include all of the latest topology changes.

MODELING ASSUMPTIONS

Initial Study Files

- The draft initial 2027 Needs Assessment cases and files and the draft Summary Document for 2017 Transmission Planning Base Case Library Review were posted on June 30, 2017 for stakeholder review and comment
- After the stakeholder comment period, the ISO posted:
 - the final initial 2027 Needs Assessment cases and study files, that will be used for the ME Needs Assessment,
 - https://smd.iso-ne.com/operations-services/ceii/pac/2017/08/ceii_final_2027 needs assessment cases.zip
 - Any other changes made to the initial study files since their posting on 8/4/17 will be reflected in the scope of work report and will be included in the intermediate study files
 - the final Summary Document for 2017 Transmission Planning Base Case Library Review, and
 - https://smd.iso-ne.com/operations-services/ceii/pac/2017/08/ceii summary document for 2017 transmission planning base case library.zip
 - the document responding to stakeholder comments
 - https://www.iso-ne.com/static-assets/documents/2017/08/response_to_ stakeholder comments on the 2017 transmission planning base case libr ary review.pdf

ISO NE DUDUIC

Modeling Assumptions

Study Horizon

 This study will be focused on 2027 for the ten-year horizon utilizing the 2017 Capacity, Energy, Loads, and Transmission (CELT) report

Existing Topology

All transmission and generation facilities that are in-service as of June
 1, 2017 are included in the base cases

Load Levels

- The 2017 Capacity, Energy, Loads, and Transmission (CELT) report was used to determine the forecasted loads for the peak load demand level evaluated
 - 34,870 MW 90/10 summer peak load (includes T&D losses)
- A minimum load analysis will be performed at a fixed New England load of 8,000 MW (includes T&D losses and manufacturing loads)

Demand Resource Assumptions

New England Demand Resource Performance Assumptions

Load Level	Passive DR	Active DR	Forecasted EE
Summer Peak (90/10)	100%	75%	100%

- 2,826 MW* 100% of Passive DR that cleared in the Forward Capacity Market through FCA 11 (June 1, 2020 – May 31, 2021)
- 373 MW* 75% of Active DR that cleared in the Forward Capacity Market through FCA 11 (June 1, 2020 – May 31, 2021)
- 1,715 MW* 100% of 2017 CELT Energy Efficiency (EE) forecast for the period beyond May 31, 2021

Future Generation Assumptions

- All cleared generator additions through FCA 11 will be modeled
- All submitted retirement delist bids through FCA 12 will be excluded from the base cases

^{*} Includes 5.5% distribution losses

 Photovoltaic (PV) Generation Modeled utilizing the 2017 CELT PV Generation Forecast

PV	2027 Summer Peak (MW)*			
	A – PV generation (nameplate) in New England			
	B – 5.5% Reduction in Distribution Losses	+260		
New England	C – Unavailable PV generation (A+B)x(100%-26%)	-3,694		
	PV generation Modeled in Case as Negative Loads (A+B)-C			

^{*} These values exclude explicitly modeled PV generators.

New England New Load Levels (Excludes Transmission Losses)

Category	Summer Peak 2027 90/10 Load (MW)	Minimum Load 2027 (MW)
CELT Forecast	34,043	N/A
Fixed New England load	N/A	7,495
Non-CELT Manufacturing load in New England	320	320
Available FCA-11 Passive DR (modeled as negative load)	-2,826	0
Available FCA-11 Active DR (modeled as negative load)	-373	0
Available 2017 CELT EE Forecast for study year (modeled as negative load)	-1,715	0
Available 2017 CELT PV Forecast for study year (modeled as negative load)	-1,298	0
Net load modeled in New England (Excludes Station Service)	28,151	7,815

- Transmission Upgrades Included in the Base Cases:
 - RSP Project Tracking Sheet All reliability upgrades in the June 2017
 RSP Project List (Table 1a and 1b) that were Proposed, Planned and Under Construction were included in the base cases
 - Asset Condition Tracking Sheet In general, all Asset Condition projects that are listed in the June 2017 Asset Condition listing that were Planned, Proposed, or Under Construction are included in the base cases
 - Local System Plan (LSP) Projects Tracking Sheet Using the information from the 2016 TOPAC, all future LSP projects for which the ISO had modeling data available have been included in the base cases
 - Approved PPAs Tracking Sheet Transmission projects with an approved PPA as of June 1, 2017 that are not covered under the previously discussed tracking sheets and are not in-service as of June 1, 2017 have been included in the base cases
 - See Appendix E of the Summary Document for 2017 Transmission
 Planning Base Case Library Review to access all of the tracking sheets
 - https://smd.iso-ne.com/operationsservices/ceii/pac/2017/08/ceii summary document for 2017 transmissi on planning base case library.zip

ISO-NE PUBLIC

State Sponsored Request For Proposals (RFPs)

Section 4.1(f) of Attachment K states:

"Specifically, the ISO shall incorporate or update information regarding resources in Needs Assessments that have been proposed and (i) have cleared in a Forward Capacity Auction pursuant to Market Rule 1 of the ISO Tariff, (ii) have been selected in, and are contractually bound by, a state-sponsored Request For Proposals, or (iii) have a financially binding obligation pursuant to a contract." (underlining added)

"With respect to (ii) or (iii) above, the proponent of the market response shall inform the ISO, in writing, of its selection or its assumption of financially binding obligations, respectively."

- If there are any resources that meet criteria (ii) and (iii) stated above that the ISO should consider for inclusion in the respective study area Needs Assessments, the proponents shall do the following no later than Sunday, December 3rd:
 - Notify the ISO in writing via <u>pacmatters@iso-ne.com</u>
 - Provide the contract as part of the notification to the ISO

PEAK LOAD DISPATCHES AND TRANSFER LEVELS

Steps to Create the Needs Assessment Dispatches

The following process was used to create the ME study area dispatches

Step 1:

Set Renewable Generation and Imports

Step 2:

Set Probability
Based
Unavailability

Step 3:

Establish Reserves while Respecting Interface Limits

Steps to Create the Needs Assessment Dispatches

Step 1:

Set Renewable Generation and Imports

Step 2:

Set Probability
Based
Unavailability

Step 3:

Establish Reserves while Respecting Interface Limits

Step 1 -Set Renewable Generation and Imports

- Renewable generation in New England including the ME study area is dispatched based on historical availability
- The table below specifies the ranges of imports from external areas that are proposed for the Needs Assessment

Inter-area Interface	Dispatch Range (MW)
New Brunswick to New England tie (NB-NE)	0 and 700
New York to New England AC ties (NY-NE)	0 and 1400
Cross Sound Cable HVDC From Long Island to New England (CSC)	0
Phase II HVDC from Quebec to New England (Phase II)	950
Highgate HVDC From Quebec to New England (Highgate)	200

Steps to Setup the Needs Assessment Dispatches

Step 1:

Set Renewable Generation and Imports

Step 2:

Set Probability
Based
Unavailability

Step 3:

Establish Reserves while Respecting Interface Limits

Step 2 – Set Probability Based Unavailability

Type of Group	Group of Generators	Max MW Unavailable at 90/10 Peak Load
Study Area (Largest Generator – Yarmouth #4 – 620 MW)	ME Generators	620
Study Area + Adjacent Area	ME+NH Generators	885
Receiving End of System Stress	Eastern New England	1,554

^{*} East-West interface is used to define the boundary between Eastern New England and Western New England

Step 2 – Set Dispatches

- The non-renewable generators unavailable per dispatch at 90/10 peak load are shown in the table below
- Dispatches that end in A and B have different stress on NB-NE interface
 - Dispatches with NB-NE=700 MW in A (example Dispatch D1A)
 - Dispatches with NB-NE=0 MW in B (example Dispatch D1B)

					90/10				
D1A	D1B	D2A	D2B	D3A	D3B	D4A	D4B	D5A	D5B
Yarmouth #4	Yarmouth #4	Westbrook	Westbrook	MIS	MIS	RPA	RPA	Bucksport G3, G5	Bucksport G3, G5
Schiller #6, Jet	Schiller #6, Jet	Indeck GT5, GT6	Sappi Somerset G2	Newpage Cogen	AEI Livermore	Yarmouth #3	Yarmouth #3	Verso Cogen #1	Verso Cogen #1
Mystic #7	Mystic #7	PERC	Schiller #6, Jet	Mystic #7	SEA Stratton	Bucksport G4	Bucksport G4	Verso Jay C	Verso Jay C
NP Blackstone #1	ANP Blackstone #1	Schiller #6, Jet	Mystic #7	ANP Blackstone #1	Mystic #7	Eco ME	Schiller #6, Jet	Yarmouth #1, #2	Yarmouth #1, #2
		Mystic #7	ANP Blackstone #1	Dartmouth Power	ANP Blackstone #1	Sappi Westbrook 9	Mystic #7	Casco Bay	Casco Bay
		ANP Blackstone #1	SEMASS G2		Dartmouth Power	Cape G5	ANP Blackstone #1	Schiller #6, Jet	Schiller #4
					SEMASS G2	Schiller #6, Jet	Dartmouth Power	Merrimack #1, CT #10	Newington G1
						Mystic #7	SEMASS G2	Whitelake Jet	Mystic #7
						ANP Blackstone #1		Bridgewater	Dighton Power
						SEMASS G2		Hemphill Power	
								Alexandria Gen	
								Tamworth Gen	
								Lost Nation Jet	
		Legend						Bethlehem	
	Generators	Unavailable in	Study Area					Whitefield	
			Adjacent Area					Mystic #7	
								ANP Blackstone #1	
	Generators	Unavailable in	Receiving End					Pawtucket Power	

Steps to Setup the Needs Assessment Dispatches

Step 1:

Set Renewable Generation and Imports

Step 2:

Set Probability
Based
Unavailability

Step 3:

Establish Reserves while Respecting Interface Limits

Step 3 - Establish Reserves

- In this step, the reserves are established while respecting the interface limits
- The priority order for reserve establishment is as follows:
 - Priority 1 Study area and Receiving End Weekly Hydro units
 - Priority 2 Receiving End non-renewable generators and pumped hydro units
 - Priority 3 Sending End non-renewable generators
- The reserves will be established following the priority order noted above

ISO-NE PUBLIC

Step 3 - Establish Reserves

- For the ME Study Area one interface stress considered (West to East)
 - The proposed generation dispatches in Maine and New Hampshire, and transfers across the NB-NE interface, result in north to south power flows
 - More power is pulled down the eastern part of the system with Eastern New England as the Receiving End due to establishing unavailable and reserve units in southeastern New England
- For the stress with Eastern New England as the Receiving End, the total of 1200 MW of reserves are established as follows
 - Priority 1 Reserves There are 489 MW weekly hydro units on the Receiving End
 - Priority 2 Reserves There are 711 MW non-renewable generators on the Receiving End
 - Priority 3 Reserves Since priority 1 and priority 2 reserves cover the total 1200
 MW reserve requirement, there is no need to consider any Sending End non-renewable generators in the total reserves established

ISO-NE PUBLIC

Step 3 – Establish Reserves

• The table below shows the amount of reserves available to be turned on after the first contingency in the N-1-1 analysis

			Priorit	ty 1 Reserves	Priority 2 Reserves	Priority 3 Reserves		
Dispatch	NB-NE (MW)	Receiving End	Weekly Hydro Receiving End (MW)	Weekly Hydro Sending End (MW)	Non-Renewable Generators Receiving End (MW)	Non-Renewable Generators Sending End (MW)	Total (MW)	
D1A	700	Eastern	489	0	711	0	1200	
D1B	0	Eastern	489	0	711	0	1200	
D2A	700	Eastern	489	0	711	0	1200	
D2B	0	Eastern	489	0	711	0	1200	
D3A	700	Eastern	489	0	711	0	1200	
D3B	0	Eastern	489	0	711	0	1200	
D4A	700	Eastern	489	0	711	0	1200	
D4B	0	Eastern	489	0	711	0	1200	
D5B	700	Eastern	489	0	711	0	1200	

List of non-Renewable generator reserves in Receiving End greater than 20 MW:

- Canal #3 340 MW
- West Medway Jet #1-#3 117 MW
- TA Watson #1 54 MW
- Waters River #1, #2 46 MW
- Farmington #1-#3 31 MW

Step 3 - Respect Interface Limits

- The final step is to check if the establishment of reserves on the Receiving End results in the violation of any key interfaces in the vicinity of the study area or the Receiving End of the stress
- All interfaces are within their limits and the reserves are considered acceptable

Interface Name	Limit (MW)	90/10 Range (MW)
Orrington South	1325	70 to 1251
ME-NH	1900	245 to 1217
NNE Scobie + 394	3450	1625 to 2531
West - East	2200	1249 to 1937
North-South	2725	824 to 1626

SUMMARY OF PEAK LOAD DISPATCHES

Summary of Peak Load Dispatches - MWs Unavailable and Transfer Levels

Dispatch	MW Unavailable in Study Area and Adjacent Area (Maximum MW^)		MW Unavailable in Receiving End (Maximum MW^)		Interfaces n Transfer in MW)	Targets# Capability	Additional	Interfaces (Maximum Tra MW)	ınsfer Capa	ability in
	ME 90/10 (620)	ME +NH 90/10 (885)	Eastern 90/10 (1,554)	NY-NE (1,400)	NB-NE (700)	Phase II (1,400)	Orrington S (1,325)	ME-NH (1,900)	NNE Scobie+394 (3,450)	West- East (2,200)	N-S (2,725)
D1A	620	689	1,527	0	700	950	1,251	910	2,308	1,270	1,548
D1B	620	689	1,527	1,400	0	950	561	245	1,706	1,920	886
D2A	616	685	1,523	0	700	950	1,190	920	2,323	1,262	1,557
D2B	610	679	1,545	1,400	0	950	561	251	1,719	1,937	900
D3A	610	610	1,531	0	700	950	761	938	2,370	1,249	1,626
D3B	587	587	1,536	1,400	0	950	70	280	1,777	1,916	987
D4A	595	664	1,530	0	700	950	1,091	949	2,344	1,257	1,586
D4B	529	598	1,547	1,400	0	950	401	338	1,796	1,922	979
D5A	306	655	1,550	0	700	950	1,153	1,217	2,531	1,271	1,599
D5B	306	774	1,535	1,400	0	950	463	553	1,625	1,907	824

[^] Maximum MW is the Maximum unavailable MW of non-renewable generators based on probabilistic methods

^{*}Actual interface transfers may vary slightly from the targets due to power flow mismatches

Summary of Peak Load Dispatches - Dispatch Data

- For each dispatch, the following slides summarize the:
 - Stress
 - Relationship between the study area, adjacent area and Receiving End of system stress,
 - Total amount of generation (MW) unavailable in each area,
 - Relevant generators turned off in each area, and
 - Information on reserves

Summary of Peak Load Dispatches – Dispatch D1A at 90/10 Peak Load

NB – NE = 700 MW

Study Area = ME

Actual Gen Unavailable in ME = 620 MW

Largest Gen Unavailable in ME

Yarmouth #4 – 620 MW

Relevant Generators Unavailable

Yarmouth #4 – 620 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 69 MW

Generators Unavailable

- Schiller #6 51 MW
- Schiller Jet 18 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 838 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW

Total Reserves = 1200 MW, which includes:

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D1B at 90/10 Peak Load

NB – NE = 0 MW

Study Area = ME

Actual Gen Unavailable in ME = 620 MW

Largest Gen Unavailable in ME

Yarmouth #4 – 620 MW

Relevant Generators Unavailable

Yarmouth #4 – 620 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 69 MW

Generators Unavailable

- Schiller #6 51 MW
- Schiller Jet 18 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 838 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW

Total Reserves = 1200 MW, which includes:

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D2A at 90/10 Peak Load

NB – NE = 700 MW

Study Area = ME Actual Gen Unavailable in ME = 616 MW

Relevant Generators Unavailable

- Westbrook 544 MW
- Indeck GT5, GT6 47 MW
- PERC 25 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 69 MW

Generators Unavailable

- Schiller #6 51 MW
- Schiller Jet 18 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 838 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW

Total Reserves = 1200 MW, which includes:

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D2B at 90/10 Peak Load

NB – NE = 0 MW

Study Area = ME Actual Gen Unavailable in ME = 610 MW

Relevant Generators Unavailable

- Westbrook 544 MW
- Sappi Somerset 66 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 69 MW

Generators Unavailable

- Schiller #6 51 MW
- Schiller Jet 18 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 866 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW
- SEMASS G2 28 MW

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D3A at 90/10 Peak Load

NB – NE = 700 MW

Study Area = ME

Actual Gen Unavailable in ME = 610 MW

Relevant Generators Unavailable

- Maine Independence Station 500 MW
- Newpage Cogen 110 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 0 MW

Generators Unavailable

none

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 921 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW
- Dartmouth Power 83 MW

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D3B at 90/10 Peak Load

NB – NE = 0 MW

Study Area = ME

Actual Gen Unavailable in ME = 587 MW

Relevant Generators Unavailable

- Maine Independence Station 500 MW
- SEA Stratton 49 MW
- AEI Livermore 38 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 0 MW

Generators Unavailable

none

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 949 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW
- Dartmouth Power 83 MW
- SEMASS G2 28 MW

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D4A at 90/10 Peak Load

NB – NE = 700 MW

Study Area = ME

Actual Gen Unavailable in ME = 595 MW

Relevant Generators Unavailable

- Rumford Power Authority 251 MW
- Bucksport G4 161 MW
- Yarmouth #3 117 MW
- Sappi Westbrook 9 39 MW
- Cape G5 16 MW
- Eco ME 11 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 69 MW

Generators Unavailable

- Schiller #6 51 MW
- Schiller Jet 18 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 866 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW
- SEMASS G2 28 MW

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D4B at 90/10 Peak Load

NB – NE = 0 MW

Study Area = ME

Actual Gen Unavailable in ME = 529 MW

Relevant Generators Unavailable

- Rumford Power Authority 251 MW
- Bucksport G4 161 MW
- Yarmouth #3 117 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 69 MW

Generators Unavailable

- Schiller #6 51 MW
- Schiller Jet 18 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 949 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW
- Dartmouth Power 83 MW
- SEMASS G2 28 MW

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D5A at 90/10 Peak Load

NB – NE = 700 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 349 MW

Generators Unavailable

- Schiller #6, Jet 69 MW
- Merrimack #1, CT #10 145 MW
- Tamworth Gen 22 MW
- Hemphill Power 20 MW
- Alexandria Gen 17 MW
- Whitelake Jet 17 MW
- Whitefield 16 MW
- Bethlehem 15 MW
- Bridgewater 14 MW
- Lost Nation Jet 14 MW

Study Area = ME

Actual Gen Unavailable in ME = 306 MW Relevant Generators Unavailable

- Yarmouth #1, #2 106 MW
- Bucksport G3, G5 99 MW
- Verso Cogen #1 44 MW
- Verso Jay C 40 MW
- Casco Bay 17 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 895 MW

Generators Unavailable

- Mystic #7 594 MW
- ANP Blackstone #1 244 MW
- Pawtucket Power 57 MW

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

Summary of Peak Load Dispatches – Dispatch D5B at 90/10 Peak Load

NB – NE = 0 MW

Study Area = ME

Actual Gen Unavailable in ME = 306 MW Relevant Generators Unavailable

- Yarmouth #1, #2 106 MW
- Bucksport G3, G5 99 MW
- Verso Cogen #1 44 MW
- Verso Jay C 40 MW
- Casco Bay 17 MW

Adjacent Area = NH

Actual Gen Unavailable in NH = 468 MW Generators Unavailable

- Newington G1 417 MW
- Schiller #4 51 MW

Receiving End of System Stress = Eastern New England

Actual Gen Unavailable in Eastern NE outside of ME and NH = 761 MW

Generators Unavailable

- Mystic #7 594 MW
- Dighton Power 167 MW

- weekly hydro generators in Eastern NE (489 MW)
- non-renewable generators in Eastern NE outside of ME+NH (711 MW)

MINIMUM LOAD ASSUMPTIONS AND DISPATCHES

Minimum Load Assumptions

- Majority of Maine generators OOS
- All major New Hampshire generators OOS
- All NH, Maine and Boston reactors online
- All pumped hydro generators OOS
- Low transfers across interfaces
- All transmission capacitors OOS

Minimum Load Dispatch

- Two dispatches are considered
 - NB-NE= 700 MW
 - NB-NE= 0 MW
- All NH and ME generators connected to 345 kV system OOS

ISO-NE PUBLIC

SHORT CIRCUIT ASSUMPTIONS

Short Circuit Basecase Assumptions

- The short circuit basecase used for the ME Needs Assessment is based on the expected topology in the 2022 compliance steady state base case
 - No significant project is expected in the 2022-2027 timeframe, and hence the 2022 case was considered acceptable
- The 2022 case includes the impact of all PPA approved generators and ETUs (including resources without an obligation through the FCM)
 - The resources with an approved PPA that do not have an obligation through the FCM cannot be relied upon to resolve a reliability need (and are therefore not considered in steady state),
 - However, they do contribute to the available short circuit current as they may be in service as part of the energy dispatch of the system.
- All generators in the short circuit model will be considered online for this study

ISO-NE PUBLIC

STUDY METHODOLOGY

Study Methodology

- Steady state thermal and voltage analysis will be performed, for N-0 (all-facilities-in), N-1 (all-facilities-in, first contingency), and N-1-1 (facility-out, first contingency) for the described set of generation dispatches and inter-regional stresses
 - Up to 1,200 MW generation re-dispatch will be allowed between the first and second contingency
 - If any needs are identified in the summer peak cases:
 - an analysis will be completed to indicate whether the needs are time sensitive or not
 - a critical load level (CLL) analysis will be completed
- Short circuit analysis will evaluate the breaker duties at all substations in the study area

SCHEDULE/NEXT STEPS

Schedule/Next Steps

- Please submit comments on the materials in this presentation to pacmatters@iso-ne.com by Sunday, December 3rd
- Proponents of state sponsored RFPs shall notify the ISO in writing via pacmatters@iso-ne.com by Sunday, December 3rd
- Post the draft ME 2027 Needs Assessment Scope of Work report and intermediate study files – December 2017
- Complete the ME 2027 Needs Assessment and present to PAC
 - Q1 2018, and post draft report Q2 2018

Questions

