

2018 Economic and Draft Annual Energy Forecast

NEPOOL Load Forecast Committee

ISO-NE PUBLIC

Load Forecast Group

Outline

		<u>Slides</u>
•	Introduction	3-6
•	Moody's Macroeconomic Forecast	7-15
•	Energy Forecast (Region and States)	16-25
•	Summary of 2017 Summer Peak Demand	26-29
•	Next Steps	30
•	Appendix (Regional Energy Model Statistics)	32-34

Introduction

- ISO has developed draft 2018 energy forecasts for discussion with the Load Forecast Committee
- ISO uses reconstituted loads to estimate both gross annual energy and gross peak demand forecast models
 - Reconstitution is done for load reductions from passive demand resources (PDR), price responsive demand resources (PRD), behindthe-meter PV (BTM PV), and any OP4/Audit events
 - The term "gross" load implies reconstitution
 - The term "net" load implies net of PDR, PRD and BTM PV and is representative of demand observed in real-time
- All forecasts described herein are draft and subject to change

2018 Load Forecast Development Timeline

- Activities completed to date:
 - October 2017 Received Moody's Macroeconomic Forecast
 - November 2017 Published Moody's forecast to LFC website: <u>https://www.iso-ne.com/static-assets/documents/2017/11/econ variable comp 2017fcst vs 2016fcst.xlsx</u>
 - November 16, 2017 Moody's presentation at PAC: https://www.iso-ne.com/static-assets/documents/2017/11/a3 moodys 2017 economic update.pdf
 - December 2017 ISO published Summer 2017 Weather Normal Peak Load report: https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/summer-and-winter-normalized-peaks
- LFC meetings:
 - December 13, 2017 Moody's forecast, draft energy forecast, 2017 summer peak review
 - February 7, 2018 Final draft energy forecast and draft summer peak forecast

- March 28, 2018 Final draft seasonal peak forecasts
- July 2018 Summer LFC meeting (date TBD)
- Other stakeholder meetings:
 - March 14, 2018 PAC
 - April 26, 2018 PAC
- May 1, 2018 Final forecast published in 2018 CELT report

2018 Preliminary Energy Forecast

- Energy models were estimated using reconstituted annual energy from 1990-2017 (28 years)
- Energy models use the updated Moody's macroeconomic forecast published in October 2017
 - Bureau of Economic Analysis revised some historical values
- ISO assumes normal weather for the energy forecast
 - Normal weather is defined as the 20 year average from 1996-2015
- Some data was estimated to develop preliminary forecasts
 - Monthly energy (November-December 2017)
 - BTM PV reconstitution data (September-December 2017)
 - PDR reconstitution data (November-December 2017)
- Preliminary net energy forecast values are based on the 2017 EE and BTM PV forecasts

- The energy forecast is an input into the peak demand forecast
- Regional energy forecast model details and statistics are included in Appendix

Observations on Preliminary 2018 Forecast

- Moody's forecasts roughly the same economic growth in the region (2017-2026 CAGR of 1.95%) relative to their previous forecast (2017-2026 CAGR of 1.89%)
 - Feds will increase interest rates, with values reaching 4% by end of decade
 - Assume tax cuts pass Congress, and will in turn increase deficit
 - Oil prices increase slowly to \$55-\$60/barrel; natural gas prices remain low
- The preliminary regional gross energy forecast is approximately
 0.3% higher in 2026 than the 2017 CELT forecast
 Percent differences vary over the forecast horizon and across states
- Net energy forecasts presented herein are illustrative and will change when the 2018 EE and BTM PV forecasts are developed

ISO-NE PUBLIC

 These forecasts are developed annually as part of the EE Forecast Working Group (EEFWG) and Distributed Generation Forecast Working Group (DGFWG) stakeholder processes

MOODY'S MACROECONOMIC FORECAST (PUBLISHED OCTOBER 2017)

Gross State Product (GSP) – New England and States

New England Percent of US Gross Domestic Product

ISO-NE PUBLIC

New England Gross Regional Product

Compound Annual Growth Rate (CAGR) forecast from 2017 thru 2026 of 1.95% approximately the same as last year's forecast of 1.89%. Historical revisions of GRP increased slightly

ISO-NE PUBLIC

National CAGR, for the same forecast period, is 2.14%, similar to that from last year's forecast of 2.11%.

Connecticut Gross State Product

The forecast CAGR from 2017 thru 2026 increased slightly to 1.70% from last year's forecast of 1.65%, however, due to historical revisions, absolute output is lower.

Massachusetts Gross State Product

CAGR forecast from 2017 thru 2026 increased slightly to 2.20% from last year's forecast of 2.14%. Historical revisions increased GSP level.

Maine Gross State Product

CAGR from 2017 thru 2026 increased slightly to 1.74% from last year's forecast of 1.69%. Historical revisions increased GSP level.

New Hampshire Gross State Product

CAGR from 2017 thru 2026 increased to 1.73% from last year's forecast of 1.66%. Historical GSP was also increased.

Rhode Island Gross State Product

CAGR from 2017 thru 2026 rose to 1.74% from last year's forecast of 1.68%, however, due to historical revisions, absolute output is lower.

ISO-NE PUBLIC

Vermont Gross State Product

CAGR from 2017 thru 2026 remained approximately the same as last year's forecast of 1.15, however, due to historical revisions, absolute output is lower.

PRELIMINARY 2018 GROSS ENERGY FORECAST

New England and States

New England

ISO-NE PUBLIC

2018 (+0.3% ,+418 GWh) 2022 (+0.3% , +420 GWh) 2026 (+0.3% , +489 GWh)

Gross Energy Forecast *New England*

ISO-NE subtracts impacts of Federal Efficiency Standards (EISA07) from the modeled gross energy forecast

	2018 Draft Forecast		2017 CELT			
	Gross Forecast	Incremental	Gross Forecast	Gross Forecast		
Year	w/o Standards	Standards	with Standards	with Standards	Change	% Change
	(GWh)	(GWh)	(GWh)	(GWh)	(GWh)	
2018	142,530	34	142,496	142,078	418	0.29%
2019	143,896	68	143,828	143,447	381	0.27%
2020	144,742	99	144,643	144,611	32	0.02%
2021	146,159	141	146,018	145,799	219	0.15%
2022	147,743	196	147,547	147,127	420	0.29%
2023	149,362	252	149,110	148,507	603	0.41%
2024	150,790	296	150,494	149,884	610	0.41%
2025	152,122	346	151,776	151,233	543	0.36%
2026	153,476	394	153,082	152,593	489	0.32%
2027	154,814	440	154,374			

Energy Forecast

New England Gross and Net

Annual Energy (GWh)						
	Gross Forecast			Net Forecast		
	with Standards	PV:BTM *	PDR *	with Standards		
2018	142,496	2,373	13,279	126,844		
2019	143,828	2,800	14,911	126,117		
2020	144,643	3,133	17,038	124,472		
2021	146,018	3,381	19,441	123,196		
2022	147,547	3,609	21,659	122,279		
2023	149,110	3,830	23,683	121,597		
2024	150,494	4,027	25,508	120,959		
2025	151,776	4,185	27,137	120,454		
2026	153,082	4,338	28,575	120,169		
2027	154,374					

* Note: 2017 EE and BTM PV forecast values used for reference only; 2018 EE and BTM PV forecasts are under development

ISO-NE PUBLIC

Connecticut

ISO-NE PUBLIC

2018 (-0.4%, -148 GWh) 2022 (-0.4%, -134 GWh) 2026 (-0.5%, -178 GWh)

Massachusetts

ISO-NE PUBLIC

2018 (+0.5%, +351 GWh) 2022 (+0.4%, +301 GWh) 2026 (+0.5%, +365 GWh)

Gross Energy Forecast *Maine*

ISO-NE PUBLIC

2018 (+1.0%. +122 GWh) 2022 (+1.3%, +171 GWh) 2026 (+1.8%, +252 GWh)

New Hampshire

ISO-NE PUBLIC

2018 (0.0%, +4 GWh) 2022 (+0.3%, +33 GWh) 2026 (+0.4%, +52 GWh)

Rhode Island

ISO-NE PUBLIC

2018 (+0.4%, +33 GWh) 2022 (-0.1%, -11 GWh) 2026 (-0.3%, -29 GWh)

Vermont

ISO-NE PUBLIC

2018 (+0.8% , +56 GWh) 2022 (+0.8% , +60 GWh) 2026 (+0.4%, +27 GWh)

SUMMARY OF 2017 SUMMER PEAK DEMAND

Summary of 2017 Summer Peak Demand Net Demand

- ISO's long-term summer load forecast uses a 3-day, eight-city weighted temperature-humidity index (WTHI)
- The table below lists the five highest <u>net</u> peak demand days for summer 2017 along with the summer peak demand forecasts published in 2017 CELT
 - The BTM PV values are the MW reduction of the daily peak load determined through reconstitution, as depicted on next slide

Peak Day	Day of Week	Peak Load *	Peak Hour	WTHI	BTM PV
90/10 Forecast	-	28,865	-	82.0	575
50/50 Forecast	-	26,482	-	79.9	575
6/13/2017	Tue	23,968	17	79.3	601
7/19/2017	Wed	23,593	18	77.2	538
7/20/2017	Thr	23,556	17	78.2	720
6/12/2017	Mon	23,346	18	77.4	491
7/21/2017	Fri	22,942	17	77.8	650

* Forecast loads are net of forecasted impacts of Passive and Active Demand Resources and behind-the-meter PV; actual peak loads are those measured in real-time, but are reconstituted for Real Time Demand Resources dispatched during Audit

Determining BTM PV Peak Load Reduction

2017 New England Summer Peak Day

ISO-NE PUBLIC

2017 Summer Peak – Tuesday, June 13, 2017

Observed Load vs. Forecast

- The observed system peak load on June 13th was 2,514 MW lower than the 2017 CELT net 50/50 forecast
 - Observed weather at ISO's eight weather stations was less severe (WTHI=79.3) than the weather assumed for the 50/50 long-term load forecast (WTHI=79.9)
- Using CELT 2017 forecast model coefficients, the difference between forecast and actual can be attributed to two factors:
 - 1. Peak occurred in June if the same June peak WTHI value (79.3) were to occur in either July or August, the peak would have been 2,050 MW higher
 - Peak hour WTHI value less than 50/50 WTHI value an increase of 0.6 degrees in the WTHI, the difference between the June peak WTHI value and the 50/50 value, would lead to an increase of demand by about 630 MW

ISO-NE PUBLIC

29

 Adding back the adjustments described above to the June 13th peak value results in a adjusted peak of 26,648 MW which is 166 MW (0.6%) higher than the 2017 CELT net 50/50 forecast of 26,482 MW

Next Steps

- Next LFC meeting is February 7, 2018
 - Final draft energy forecast and draft summer peak forecast will be discussed
- The final forecast will be published as part of the 2017 CELT by May 1st

ISO-NE PUBLIC

Questions

ISO-NE PUBLIC

APPENDIX

Regional Energy Forecast Model Details/Statistics

Energy Model Variables

Energy Models				
Variable	Definition			
Intercept	Constant Term			
_Log	Natural Logarithm			
NEL	Net Energy for Load net of Passive Demand Resources and PV, GWh			
NEL_LAG	NEL lagged 1 period			
RGSP	Real Gross State/Regional Product			
RPI	Annual Average Real Personal Income			
RP	Real Price of Electricity			
CDD	Total Annual Cooling Degree Days, Base 55°			
HDD	Total Annual Heating Degree Days, Base 65°			
Trend	Annual index			
YRXXXX	Dummy Variable; YRXXXX=1 if Year=XXXX; 0 otherwise			

Energy Model Statistics (preliminary)

2018 CELT New England Energy Model					
Dependent Variable:		log (Nel+PI	DR+PRD+	BTMPV)	
Sample:		1990:2017			
Observations		28			
	Parameter	⁻ Estimates			
Variable	Estimate	Standard	t Value	Pr > t	
		Error			
Intercept	2.0018	0.6603	3.03	0.006	
Nel_log_lag	0.3656	0.1088	3.36	0.003	
RGSP_LOG	0.3138	0.0530	5.92	<.0001	
RP_log	-0.0210	0.0245	-0.85	0.402	
CDD_LOG	0.0384	0.0096	4.00	0.001	
HDD_LOG	0.1217	0.0337	3.61	0.002	

Analysis of Variance						
Source	DF	Sum of	Mean	F Value		
		Squares	Square			
Model	5	0.2194	0.04388	484.24		
Error	22	0.0020	0.00009			
Corrected Total	27	0.2214				
Other Statistics						
Root MSE	0.00952	R-Square	0.991			