

#### **ISO Presentation**

**ISO-NE PUBLIC** 

Review of 2018 Early Summer Weather & Load

Discussion of Electrification/Decarbonization

Proposed Energy Modeling Changes

#### Jon Black & Fred Ninotti

# **Objectives**

- 1. Discuss weather and preliminary loads so far this summer
- 2. Begin a discussion of emerging forecasting issues related to beneficial electrification/decarbonization in the region
- Share and discuss scenario estimates of the potential impacts of electric vehicle growth on regional energy and demand and the relative uncertainty

**ISO-NE PUBLIC** 

4. Discuss proposal for monthly energy forecast modeling

# REVIEW OF EARLY SUMMER 2018 WEATHER AND LOAD



## 2018 Summer Weather & Preliminary Net Load

- The next two slides contain plots illustrating the weather and preliminary net loads experienced in New England so far this summer
- The plots on slide 5 show the period June 1, 2018 to July 18, 2018
  - Hourly regional dry bulb (DB) and dew point (DP) temperatures, 3-day weighted temperature-humidity index (WTHI), and preliminary net load
- The plots on slide 6 focus on the week of June 30, 2018 to July 7, 2018, which included July4<sup>th</sup>, which fell on a Wednesday
  - Shows hourly WTHI for each of ISO's eight weather stations and regional weighted, and preliminary net load

$$WTHI_{h} = \frac{10*THI_{h} + 5*THI_{h-24} + 2*THI_{h-48}}{17}$$

 $THI_h = 0.5 * DryBulbTemp_h + 0.3 * DewPointTemp_h + 15$ 

#### **Regional Summer Weather & Preliminary Net Load** 8-City Weighted Weather, June 1-July18, 2018



#### **Regional WTHI and Preliminary Net Load** *June 30, 2018-July 7, 2018*



# **Observations**

- From July 1<sup>st</sup> (Sunday) to July 5<sup>th</sup> (Thursday), the region experienced an extended heat wave of 5 consecutive days with WTHI as high or greater than the 50/50 (WTHI = 79.9) during afternoon hours
  - The exact timing, duration, and degree of extreme weather varied across the load centers in the region
- <u>Preliminary</u> summer peak net load of approximately 24,425 MW occurred on July 5<sup>th</sup>, the day after the holiday
  - This value will change as part of the wholesale energy market's data reconciliation process (DRP)
- The heat wave coincided with the July 4<sup>th</sup> holiday week, with the holiday occurring on a Wednesday
  - Consequently, the reducing effects of the holiday on electricity demand were present to varying degrees for the entire week

#### **EMERGING FORECASTING ISSUES**

**ISO-NE PUBLIC** 

# Introduction

- Early signs of "strategic" or "beneficial" electrification are beginning to emerge in New England
  - Includes electric vehicles and air-source heat pumps (ASHPs)
- Achieving long-term greenhouse gas (GHG) reduction goals across the region via electrification would introduce demand for a significant amount of electric energy to the regional grid that is not currently sourced in the electricity sector

## States Have Set Goals for Reductions in Greenhouse Gas Emissions: *Some Mandated, Some Aspirational*



Percent Reduction in Greenhouse Gas (GHG) Emissions Economy Wide by 2050\*

The New England states are promoting GHG reductions on a state-by-state basis, and at the regional level, through a combination of legislative mandates (e.g., CT, MA, RI) and aspirational, non-binding goals (e.g., ME, NH, VT and the New England Governors and Eastern Canadian Premiers).

10

\* MA, RI, NH, and VT use a 1990 baseline year for emissions reductions. CT and the NEG-ECP use a 2001 baseline. ME specifies reductions below 2003 levels that *may* be required "in the long term." For more information, see the following ISO Newswire article: <u>http://isonewswire.com/updates/2017/3/1/the-new-england-states-have-an-ongoing-framework-for-reducin.html</u>.

# **2018 Regional Electricity Outlook**

- The 2018 load forecast indicates that net demand will trend downward over the next decade
- Regional efforts to meet economy-wide decarbonization goals will likely reverse this trend, especially over the longer term



#### **Decarbonization of Transportation and Heating Could Impact the Grid**

**ISO-NE PUBLIC** 

A possible future trend that the ISO is watching out for is the increased adoption of electric vehicles (EVs) across the region and the greater use of electric heating. Both could increase in the future as part of the New England states' efforts to achieve their decarbonization goals. Vehicle manufacturers are also moving aggressively to include EVs in their product portfolios by the early 2020s. If rapid EV or electric heating adoption emerges, the impacts may need to be considered in the ISO's outlook for the region's demand and energy. The ISO plans to start working with regional stakeholders to quantify the impact of the states' decarbonization policies on long-term demand so that we can understand their potential effects on the power system and reflect these in future Regional System Plans.

#### Source: 2018 Regional Electricity Outlook

#### **Regional Trends Changing Electricity Consumption Patterns**

Yesterday, Today, and Tomorrow

- Historical and Future
  - Energy efficiency (includes market-based and "codes & standards")
  - Behind-the-meter photovoltaics
- Future
  - Electrification of transportation sector
    - E.g., electric vehicles
  - Electrification of heating sector
    - E.g., Air-source heat pumps (ASHP), a.k.a. cold-climate heat pumps
- ISO is actively working to better understand the overall landscape and anticipated outlook for emerging electric end uses, and their potential impacts on energy and demand
- ISO will discuss with the LFC any proposed updates or changes to forecast methodology as appropriate

**ISO-NE PUBLIC** 

# **Some State Policies Promoting Electric Vehicles**

- Connecticut
  - CT Hydrogen and Electric Automobile Purchase Rebate (CHEAPR)
- Massachusetts
  - MA electric vehicle incentive program (MassEVIP)
  - Department Of Energy Resources' MA Offers Rebates for Electric Vehicles (MOR-EV) Program
  - Goal of 300k ZEVs by 2025
- Rhode Island
  - Driving RI to Vehicle Electrification (DRIVE) program suspended on July 10, 2017

**ISO-NE PUBLIC** 

- Vermont
  - Drive Electric VT
  - VT EV Charging Station Program

# **Primary Heating Fuels in Northeastern States**

**One- to Four-Family Homes** 



Source: American Community Survey 2015, 5-year estimates

#### **New England Air-Sourced Heat Pump Installations**

| State         | Years Reported | Approximate Number of Units Installed |  |  |  |
|---------------|----------------|---------------------------------------|--|--|--|
| Maine         | 2011-FY2016    | 25,000 (Residential and Commercial)   |  |  |  |
| Connecticut   | 2012-2015      | 6176                                  |  |  |  |
| Massachusetts | 2015-2016      | 9000                                  |  |  |  |
|               | 2018           | 1230                                  |  |  |  |
| New Hampshire | 2019           | 1408                                  |  |  |  |
|               | 2020           | 1923                                  |  |  |  |
|               |                | 3000 (mini-split)                     |  |  |  |
| Rhode Island  | 2018-2020      | 90 (central)                          |  |  |  |
|               |                | 75 (oil switches)                     |  |  |  |
| Vermont       | 2014-2018      | 8200                                  |  |  |  |

Source: Vermont Energy Investment Corporation, *Driving the Heat Pump Market: Lessons Learned from the Northeast*, February 20, 2018





## SIZING UP POTENTIAL ELECTRIC VEHICLE (EV) GROWTH AND RELATED IMPACTS ON DEMAND AND ENERGY



# Introduction



- The ISO is currently investigating the regional outlook for electric vehicle (EV) growth and considering its potential impacts on the long-term load forecast
- The ISO has yet to develop formal projections of EV growth, but has used EIA's projections to develop scenarios to preliminarily estimate potential EV growth and its impact on annual energy and peak demand
  - The more aggressive scenario is roughly indicative of EV growth needed to meet goals outlined in the <u>eight-state zero-emission vehicle</u> (ZEV) Task Force's memorandum of understanding (MOU)
- EV projections included herein are for discussion purposes only

# The EV Market is Evolving

- An increasing number of automakers are offering more EV choices, and this trend is projected to continue
  - Including significant growth in SUV/Crossover vehicle class
- The nationwide charging network is expanding, enabling more consumers to consider EVs
- Battery technology is advancing and reducing EV costs



*Source: Electric Power Research Institute, A U.S. Consumer's Guide to Electric Vehicles, February 2018.* 

18

# **Electric Vehicles**

Factors Influencing EV Energy and/or Demand Impacts

- Historical EV penetration and geographical distribution
  EV registration data
- Future EV growth and geographical distribution
  EV costs, gasoline prices, federal and state policy, etc.
- Composition of EVs and their respective ranges
  - Plug-in hybrid electric vehicles (PHEVs)
  - Battery electric vehicles (BEVs or PEVs)
  - Electric bus, rail, and trolley
- Charging technology and use patterns
  - Level 1, Level 2, Fast Charging
- Charging coincidence factors (CF) and their influences
  - Charging time series data to make data-driven assumptions

**ISO-NE PUBLIC** 

19

– Influences include TOU rates, etc.

# **Penetration of Electric Vehicles by State**



PEV Registrations per 1,000 People by State, 2016

Source: U.S. Department of Energy www.energy.gov/eere/vehicles/articles/fotw-1004-november-20-2017-california-had-highest-concentration-plug-vehicles

# **Electric Vehicle Stock**

*As of December 31, 2017* 

|               | 2017 Population * | Electric   | Plug-In  |        | <b>EV Registrations</b> |
|---------------|-------------------|------------|----------|--------|-------------------------|
|               | (1,000s)          | Vehicles # | Hybrid # | Total  | per 1,000 people        |
| Connecticut   | 3,588             | 2,909      | 3,962    | 6,871  | 1.91                    |
| Maine         | 1,336             | 415        | 1,278    | 1,693  | 1.27                    |
| Massachusetts | 6,860             | 5,898      | 8,003    | 13,901 | 2.03                    |
| New Hampshire | 1,343             | 636        | 1,515    | 2,151  | 1.60                    |
| Rhode Island  | 1,060             | 362        | 835      | 1,197  | 1.13                    |
| Vermont       | 624               | 684        | 1,581    | 2,265  | 3.63                    |
| New England   | 14,810            | 10,904     | 17,174   | 28,078 | 1.90                    |

Notes:

1. \* Population estimate as of Jul 1, 2017, Source: U.S. Census Bureau,

https://www.census.gov/data/datasets/2017/demo/popest/state-total.html

**ISO-NE PUBLIC** 

2. Data source for vehicle registrations: <u>https://autoalliance.org/in-your-state/</u>

# **EIA EV Growth Projections**

AEO2018 vs. AEO2017



# **AEO2018 Projection of EV Sales by Type**

|                            | 2018  | 2019   | 2020   | 2021   | 2022   | 2023   | 2024   | 2025   | 2026   | 2027   |
|----------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 100 Mile Electric Vehicle  | 1,731 | 2,127  | 3,243  | 4,277  | 4,993  | 5,542  | 6,422  | 7,419  | 7,413  | 7,293  |
| 200 Mile Electric Vehicle  | 1,875 | 3,301  | 5,403  | 6,788  | 7,633  | 8,908  | 10,108 | 12,415 | 13,216 | 13,894 |
| 300 Mile Electric Vehicle  | 1,364 | 2,743  | 5,336  | 7,420  | 8,737  | 10,511 | 11,267 | 13,513 | 14,744 | 15,965 |
| Plug-in 10 Gasoline Hybrid | 2,523 | 2,832  | 4,043  | 4,950  | 4,795  | 5,694  | 6,440  | 7,187  | 7,233  | 7,124  |
| Plug-in 40 Gasoline Hybrid | 1,602 | 1,758  | 2,496  | 3,055  | 2,983  | 3,540  | 4,015  | 4,497  | 4,588  | 4,615  |
| Total                      | 9,095 | 12,761 | 20,522 | 26,490 | 29,141 | 34,194 | 38,251 | 45,030 | 47,194 | 48,891 |



# **NREL Simulated Electric Vehicle Charging Profiles**

Charging Coincidence Factors

- Based on load profiles of 200 households in the Midwest from 2009
- Simulated fleet of 348 vehicles
  - 1 year of data (2010)
  - 10 minute resolution
  - Level 1 charging (1.92 kW)
  - Level 2 charging (6.6 kW)
- The plots on the following three slides are based on the aggregated charging coincidence factors for all cars in the simulated fleet

Data Source: Muratori, Matteo (2017): Impact of uncoordinated plug-in electric vehicle charging on residential power demand - supplementary data. National Renewable Energy Laboratory. https://dx.doi.org/10.7799/1363870

## **NREL Simulated Profiles**

10-Minute Level 1 and Level 2 Charging Profiles



## **NREL Simulated Profiles**

Hourly Boxplot of Level 1 Charging Coincidence Factors – July



**ISO-NE PUBLIC** 

## **NREL Simulated Profiles**

Hourly Boxplot of Level 2 Charging Coincidence Factors – July



**ISO-NE PUBLIC** 

# **California Energy Commission Study**

CA Plug-in EV Infrastructure Projections: 2017-2025

- CA has a goal of 1.5 million ZEVs by 2025
  - At the end of 2017, 350k electric vehicles were on the road in CA
- NREL modeled behavior of PEV drivers to predict charging infrastructure needs to meet state goals
  - Modeling resulted in the weekday (left) and weekend (right) charging profiles for 2025 shown below (a.k.a., the "Dragon Curve")



Source: Bedir, Abdulkadir, Noel Crisostomo, Jennifer Allen, Eric Wood, and Clément Rames. 2018. *California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025*. California Energy Commission. Publication Number: CEC-600-2018-001.

28

# **Electric Vehicle Scenarios and Assumptions**

- BEV and PHEV sales from EIA 2018 AEO projections for New England (2 scenarios)
  - 1 x EIA Sales
  - 2 x EIA Sales (double growth)
- 2 Charger Types (Level 1 and Level 2)
  - Level 1 charger draws 1.4 kW
  - Level 2 charger can draw 6 kW, typical battery acceptance rate = 3.3 kW
  - (Did not include fast-charging)
- Base assumptions:
  - 1. 90% households on Level 1 charger, 10% on Level 2 charger
  - 2. Automobile mileage 12,000 to 13,000 miles per year
  - 3. Miles per KWh=3.0 (ITRON)
  - 4. Charger use coincident factors of 100%,50% and 30% simulated

**ISO-NE PUBLIC** 

- 5. 50% of new fleet turnover after 8 years
- 6. All vehicles are all-electric (no PHEVs)

## **Scenario Calculations**

|      |                            |                      |          |          |                    | Begin miles  | 12,000    |       |        | Charge      | er Ratio    |           |           |
|------|----------------------------|----------------------|----------|----------|--------------------|--------------|-----------|-------|--------|-------------|-------------|-----------|-----------|
|      |                            |                      |          |          |                    | End miles    | 13,000    |       |        | 0.90        | 0.10        |           |           |
|      |                            |                      |          |          |                    |              |           |       |        | Hour N      | /lethod     |           |           |
|      | <b>Total Vehicle Sales</b> | EV Sales             |          |          | EV Share of        | Average      |           | UEC   | Energy | Level 1     | Level 2     | Demand at | Demand at |
| Year | (thousands)                | (cars, light trucks) | EV Decay | EV Stock | <b>Total Sales</b> | Annual Miles | Miles/KWh | (KWh) | (GWh)  | Charge (MW) | Charge (MW) | 100% CF   | 50% CF    |
| 2016 | 775.5                      | 11,875               | 0        | 17,080   | 1.5%               | 12,000       | 3.0       | 4,000 | 68     | 18.7        | 4.7         | 23.4      | 11.7      |
| 2017 | 743.9                      | 10,998               | 0        | 28,078   | 1.5%               | 12,080       | 3.0       | 4,027 | 113    | 31.0        | 7.7         | 38.7      | 19.4      |
| 2018 | 765.9                      | 9,095                | 0        | 37,173   | 1.2%               | 12,161       | 3.0       | 4,054 | 151    | 41.3        | 10.3        | 51.6      | 25.8      |
| 2019 | 763.8                      | 12,761               | 0        | 49,934   | 1.7%               | 12,243       | 3.0       | 4,081 | 204    | 55.8        | 14.0        | 69.8      | 34.9      |
| 2020 | 759.5                      | 20,522               | 0        | 70,456   | 2.7%               | 12,324       | 3.0       | 4,108 | 289    | 79.3        | 19.8        | 99.1      | 49.6      |
| 2021 | 741.1                      | 26,490               | 1,781    | 95,165   | 3.6%               | 12,407       | 3.0       | 4,136 | 394    | 107.8       | 27.0        | 134.8     | 67.4      |
| 2022 | 741.9                      | 29,141               | 3,668    | 120,637  | 3.9%               | 12,490       | 3.0       | 4,163 | 502    | 137.6       | 34.4        | 172.0     | 86.0      |
| 2023 | 748.6                      | 34,194               | 5,253    | 149,578  | 4.6%               | 12,574       | 3.0       | 4,191 | 627    | 171.8       | 42.9        | 214.7     | 107.3     |
| 2024 | 750.8                      | 38,251               | 7,147    | 180,683  | 5.1%               | 12,658       | 3.0       | 4,219 | 762    | 208.9       | 52.2        | 261.1     | 130.5     |
| 2025 | 754.8                      | 45,030               | 9,960    | 215,753  | 6.0%               | 12,742       | 3.0       | 4,247 | 916    | 251.1       | 62.8        | 313.8     | 156.9     |
| 2026 | 761.7                      | 47,194               | 12,397   | 250,550  | 6.2%               | 12,828       | 3.0       | 4,276 | 1,071  | 293.5       | 73.4        | 366.9     | 183.4     |
| 2027 | 765.0                      | 48,891               | 15,452   | 283,989  | 6.4%               | 12,914       | 3.0       | 4,305 | 1,222  | 334.9       | 83.7        | 418.6     | 209.3     |
| 2028 | 770.9                      | 51,509               | 19,321   | 316,177  | 6.7%               | 13,000       | 3.0       | 4,333 | 1,370  | 375.4       | 93.8        | 469.2     | 234.6     |

# **Estimated EV Energy with Projected EIA Sales**

|      | 2018    | CELT (GW |        |       |          |
|------|---------|----------|--------|-------|----------|
|      | Net     | EE       | BTM-PV | EV    | % of Net |
| 2018 | 124,252 | 16,074   | 2,162  | 151   | 0.12%    |
| 2019 | 122,498 | 18,764   | 2,558  | 204   | 0.17%    |
| 2020 | 120,395 | 21,332   | 2,906  | 289   | 0.24%    |
| 2021 | 118,949 | 23,827   | 3,233  | 394   | 0.33%    |
| 2022 | 117,870 | 26,128   | 3,540  | 502   | 0.43%    |
| 2023 | 117,039 | 28,228   | 3,834  | 627   | 0.54%    |
| 2024 | 116,249 | 30,121   | 4,115  | 762   | 0.66%    |
| 2025 | 115,594 | 31,811   | 4,361  | 916   | 0.79%    |
| 2026 | 115,196 | 33,302   | 4,575  | 1,071 | 0.93%    |
| 2027 | 114,981 | 34,601   | 4,783  | 1,222 | 1.06%    |

# **Estimated EV Energy with Projected EIA Sales**

**ISO-NE PUBLIC** 

#### **EIA AEO 2018 Projection**

#### 2X EIA AEO 2018 Projection

**2018 CELT Energy Forecast** 





#### **Estimated EV Summer Demand with Projected EIA Sales**

*Charger ratio: Level 1=0.9, Level 2=0.1, CF =0.5* 

|      | 2018      | B CELT (M) |               |     |            |
|------|-----------|------------|---------------|-----|------------|
|      | 50/50 Net | EE         | <b>BTM-PV</b> | EV  | % of 50/50 |
| 2018 | 25,728    | 2,699      | 633           | 26  | 0.10%      |
| 2019 | 25,512    | 3,066      | 721           | 35  | 0.14%      |
| 2020 | 25,298    | 3,416      | 790           | 50  | 0.20%      |
| 2021 | 25,136    | 3,757      | 851           | 67  | 0.27%      |
| 2022 | 25,021    | 4,072      | 901           | 86  | 0.34%      |
| 2023 | 24,942    | 4,359      | 945           | 107 | 0.43%      |
| 2024 | 24,889    | 4,617      | 980           | 131 | 0.52%      |
| 2025 | 24,864    | 4,848      | 1009          | 157 | 0.63%      |
| 2026 | 24,874    | 5,052      | 1031          | 183 | 0.74%      |
| 2027 | 24,912    | 5,229      | 1051          | 209 | 0.84%      |

#### **Estimated EV Summer Demand with Projected EIA Sales** *Charger ratio: Level 1=0.9, Level 2=0.1*



**ISO-NE PUBLIC** 

#### **Estimated EV Summer Demand with 2X Projected EIA Sales** *Charger ratio: Level 1=0.9, Level 2=0.1, CF =0.5*



#### **MONTHLY ENERGY MODELING**



# **Energy Reconstitution Review**

Explanation of Gross and Net Load Forecasts

- The ISO annually develops 10-year forecasts of energy and demand that are published as part of the <u>Capacity, Energy, Loads, and Transmission (CELT)</u> <u>report</u>
- ISO first develops "gross" load forecasts that reflect a forecast of load without reductions from passive demand resources, also called Energy Efficiency (EE) resources and behind-the-meter PV (BTM PV)
  - EE and BTM PV are reconstituted into historical hourly loads used to estimate gross load forecast models
  - Reconstitution ensures proper accounting of EE and BTM PV, which are both forecast separately
  - Reconstitution also includes load reductions from active demand resources, also called price responsive demand resources (PRD)
- "Net" load forecasts are developed by subtracting EE and BTM PV from the gross forecasts
  - Historical net loads include reconstitution of load reductions from active demand resources only
  - Net loads are intended to be representative of energy and loads observed in New England in real-time

# **Proposed Energy Forecast Methodology**

- Current Methodology (Annual models 7 total)
  - Region and state models forecast annual energy out 10 years
  - Models are estimated using reconstituted annual (gross) energy from 1990-2017
  - Models incorporate Moody's macroeconomic forecast
  - The ISO assumes normal weather for the energy forecast, defined as the 20 year annual average of HDD and CDD from 1996-2015
  - All variables in logarithmic scale
- Proposed Methodology (Monthly models 7 X 12 = 84 total)
  - Region and state models forecast monthly energy out 10 years
  - Models are estimated using reconstituted monthly (gross) energy from 1990-2017

**ISO-NE PUBLIC** 

- Models incorporate Moody's macroeconomic forecast
- Same normal weather as above
- Logarithmic scale is not used for variables

# **Benefits of Monthly Models**

- HDD and CDD are focused on a monthly level of energy usage
  - Annual models consider some HDD and CDD that have little to no impact on annual energy usage
    - How do a few CDD in the cooling season influence annual energy usage?
    - How do a few HDD in the heating season influence annual energy usage?
    - Not all CDD or HDD are created equal, i.e. a CDD in May has a different impact than a CDD in July or August
  - In monthly models, CDD and HDD are directly tied to a specific month's energy
- Enables weather normalization of energy at the state level
  - The deviation between actual degree days (DD) and normal DD multiplied by the DD coefficients adjusts the actual energy to a 'normal' level
    - Weather Adjustment<sub>t</sub> = (Normal  $DD_t Actual DD_t$ ) \*  $\beta_t(DD)$
- 'What if' analysis
  - What if January and February both reach the 90<sup>th</sup> percentile of HDD?
  - Scenarios can be easily constructed using the monthly distribution of HDD/CDD depending on the month

**ISO-NE PUBLIC** 

# **Regional Monthly Model Coefficients and Fit**

- Highlights
  - CDD used in months May thru October
  - HDD used in months November thru April
  - Price of electricity significant in 'summer' months of Jul, Aug and Sep
  - Introduce a variable to account for heat pump penetration (ITRON SAE model)
  - R-square statistic is desirable
  - All t-statistics are significant
- Methodology and results are preliminary

|     |       | COEFFICIENTS |        |       |        |        |       |  |  |  |  |
|-----|-------|--------------|--------|-------|--------|--------|-------|--|--|--|--|
|     | R-sq  | Intercept    | RGSP   | HDD   | CDD    | Price  | HP    |  |  |  |  |
| Jan | 0.981 | 3,466        | 6.659  | 2.634 | 0      | 0      | 146.3 |  |  |  |  |
| Feb | 0.988 | 2,565        | 5.941  | 3.138 | 0      | 0      | 170.0 |  |  |  |  |
| Mar | 0.972 | 3,830        | 6.051  | 2.625 | 0      | 0      | 118.1 |  |  |  |  |
| Apr | 0.980 | 4,465        | 5.899  | 1.338 | 0      | 0      | 36.8  |  |  |  |  |
| May | 0.989 | 4,638        | 6.750  | 0     | 22.110 | 0      | 0     |  |  |  |  |
| Jun | 0.986 | 3,879        | 8.194  | 0     | 12.882 | 0      | 0     |  |  |  |  |
| Jul | 0.983 | 2,787        | 10.696 | 0     | 13.651 | -23.99 | 0     |  |  |  |  |
| Aug | 0.986 | 3,112        | 10.239 | 0     | 13.298 | -12.94 | 0     |  |  |  |  |
| Sep | 0.980 | 5,235        | 7.516  | 0     | 12.273 | -66.18 | 0     |  |  |  |  |
| Oct | 0.987 | 5,327        | 6.257  | 0     | 28.990 | 0      | 0     |  |  |  |  |
| Nov | 0.986 | 4,387        | 5.988  | 1.797 | 0      | 0      | 0     |  |  |  |  |
| Dec | 0.986 | 3,964        | 6.855  | 2.211 | 0      | 0      | 96.5  |  |  |  |  |

# **Regional January Energy Model**

Actual vs Predicted with Monthly HDDs



**ISO-NE PUBLIC** 

# **2018 Regional Energy Forecast Comparison**

**ISO-NE PUBLIC** 

Monthly Models\* vs Monthly Proportions





42

\* Monthly model estimates are preliminary

# **Weather Normalization Example**

What would the energy in January have been under normal weather?

Actual January MWh = 12,600 MWh; Actual January HDD = 1,000 Weather Normal = Actual MWh + ((Normal HDD - Actual HDD) \*  $\beta$ (HDD)) = 12,600 + ((1,192 - 1,000) \* 2.634) = 12,600 + 506 = 13,106 MWh



# Scenario: January 95<sup>th</sup> Percentile Weather

What is the energy impact if January weather approaches the 95 percentile of HDD?

Additional GWh = (P95 –  $\mu$ ) \*  $\beta$ (HDD) where P95 =  $\mu$  +(1.65 \*  $\sigma$ ) = 1,192 + (1.65 \* 131.8) = 1,409.5 Degree Days = (1409.5 – 1192) \* 2.634 = 573 GWh of additional energy



# Conclusions

- The New England states are promoting GHG reductions on a state-by-state basis, and at the regional level, through a combination of legislative mandates and aspirational, non-binding goals
- Early signs of "strategic" or "beneficial" electrification are beginning to emerge in New England, but their aggregate impacts on load are not yet significant
- If extensive electrification of the transportation and heating sectors were to occur, a significant amount of electric energy would be introduced to the region's grid
- ISO is actively working to better understand the overall landscape and anticipated outlook for these emerging electric end uses, and especially that of EVs and ASHPs
- The anticipated rate of EV adoption in the near-term (0-5 years) does not appear likely to cause significant energy or demand growth
- Large-scale electrification will likely become a more significant consideration within the longer term outlook, and especially beyond the 10-year forecast horizon

# **Next Steps**

- The 2019 forecast cycle has begun
- Tentative LFC meeting dates for the 2019 forecast cycle are as follows:
  - December 14, 2018
  - February 2019 (date TBD)
  - March 2019 (date TBD)
- ISO will continue working on the monthly energy forecasting discussed for implementation as part of the 2019 forecast
- ISO will continue monitoring the previously described emerging issues, and share and discuss findings with the LFC as appropriate

**ISO-NE PUBLIC** 

46

• The ISO welcomes LFC stakeholder feedback

# Questions

**ISO-NE PUBLIC** 



