

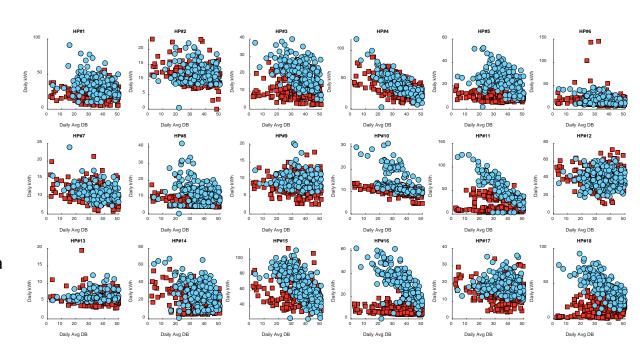
Load Forecast Committee

Jon Black

MANAGER, LOAD FORECASTING

Introduction

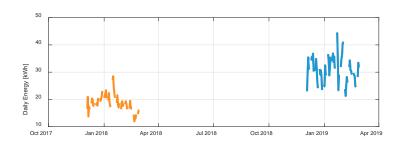
- ISO discussed methodology and assumptions used in the heating electrification at the <u>September</u> 27, 2019 and <u>November 18, 2019 LFC</u> meetings
- The ISO recognizes that heating electrification is a nascent trend, and expects that while its 2020 forecast methodology serves as a starting point, improvements will be needed as policy drivers and state initiatives are further developed and additional data become available
- The 2020 heating electrification forecast focuses on adoption of air-source heat pumps (ASHPs)
 - Consideration of other heating electrification technologies, such as ground source heat pumps (GSHP) and heat pump hot water heaters (HPHW), may also be warranted in future forecasts
 - Forecast is relevant for winter months only (January-April, and October-December)
- There are two general components to the forecast:
 - 1. Forecast the adoption of ASHPs for each state and the region over the next ten years
 - 2. Use data-driven assumptions to convert the ASHP adoption forecast into estimated impacts on monthly energy and demand by state
 - Develop monthly demand and energy impacts per installed ASHP based on recent historical demand data associated with residences with ASHPs


Residential AMI Data Analysis

- To assist in developing assumptions about changes to electricity consumption due to the adoption of ASHPs, ISO licensed advanced metering infrastructure (AMI) data from Sagewell, Inc., including:
 - Anonymized building-level hourly interval energy consumption for residential sites in northeastern MA
 - Building characteristics and end-use details that match each AMI point
 - Interval energy consumption from more than 80 houses with ASHPs installed
- Assumptions are based on analysis and regression modeling performed on the *average* hourly electricity consumption from 18 residential AMI profiles:
 - ISO removed one profile from the analysis since the November LFC due to observed data issues
 - Each of the 18 profiles corresponds to a residence where an ASHP was installed between the winters of 2017/2018 and 2018/2019, which enables a direct comparison of winter electricity consumption before and after ASHP adoption
- The resulting average profile reflects a diversity of ASHP applications (see next slide):
 - A mixture of natural gas and oil legacy heating fuels
 - Variety of ASHP heating capacities
- ISO recognizes this is a relatively small AMI sample, and will continue working with stakeholders as part of future forecast cycles to seek out additional data sources as heating electrification efforts mature in the region

Residential AMI Data

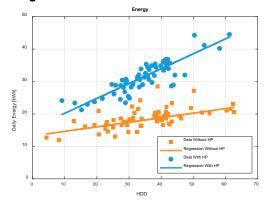
Household-Level Energy Scatter Plots


- To address stakeholder questions regarding the household-level AMI data, scatter plots to the right illustrate the relationship between daily energy and dry bulb temperature for each of the 18 sample AMI residences:
 - Period before ASHP installation is illustrated by red squares
 - Period after ASHP installation is illustrated by blue circles
- As illustrated, the data reflect a range of ASHP applications

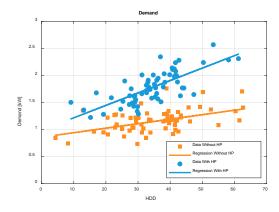
AMI Data Analysis

Results Before and After ASHP Adoption

- Analysis was performed on the average hourly electric demand of 18 residences with ASHP installations
- Since each of the ASHPs was installed between the winters of 2017/2018 and 2018/2019, a direct comparison of average winter electric energy and demand before and after ASHP adoption is possible


Data Source: Sagewell, Inc.

- The plots show the average of the 18 profiles during the two consecutive winters analyzed (weekdays only)
 - Top plot is average daily energy; bottom plot is average hourly demand
 - Orange plots are prior to ASHP adoption; blue plots are after ASHP adoption
 - The increase in both energy and demand after ASHP adoption is clearly illustrated by the higher blue plots


Estimating Energy and Demand Impacts

Development of Response Functions

- ISO developed a regression-based approach to leverage AMI and weather data to derive response functions
 - Response functions are used to estimate ASHP impacts as a function of weather
- Separate regression models were developed for energy and demand using the average of the 18 AMI data series before and after ASHP installation
 - Heating degree days (HDD) was used as the weather variable since it is included in both energy and demand forecast models
 - Top plot is for energy and bottom is demand (HE 18), weekdays only
 - Orange points are for data prior to ASHP and blue points are for data after ASHP
 - Orange and blue lines show the regression line for each set of data
- Model differences reveal the incremental increase in electric energy and demand as a function of weather (i.e., HDDs) due to ASHP adoption

Data Source: Sagewell, Inc.

AIR-SOURCE HEAT PUMP ADOPTION

Draft ASHP Adoption Assumptions

State	Draft Guidance/Assumptions
СТ	Begin with ~5,000 installations in 2020; assume a 15% growth rate
MA	2020-2021 values are estimated based on MA 3-yr EE plan; 20% annual growth to reach ~600,000 installations
ME	2020-2024 values from Efficiency Maine Trust; 5% annual growth assumed thereafter
NH	Begin with 2020 planned installations; 12% annual growth
RI	Begin with 2020 planned installations; reasonable outlook would reflect a conversion of ~30% of existing homes that use delivered fuels as legacy heating source (results in ~50% annual growth)
VT	2020-2029 values provided by Efficiency Vermont

ASHP Adoption Forecast

Includes Assumed Legacy Electric Heat Replacement

Year	Annual ASHP Installs (Thousands)						
	СТ	MA	ME	NH	RI	VT	ISO-NE
2020	5.0	23.0	13	3	0.4	5.7	50
2021	5.8	27.6	16	3.4	0.6	6.1	59
2022	6.6	33.1	19.5	3.8	0.9	6.7	71
2023	7.6	39.7	23	4.2	1.4	7.1	83
2024	8.7	47.7	27.5	4.7	2.0	7.8	99
2025	10.1	57.2	28.9	5.3	3.0	8.4	113
2026	11.6	68.7	30.3	5.9	4.6	9.0	130
2027	13.3	82.4	31.8	6.6	6.8	9.7	151
2028	15.3	98.9	33.4	7.4	10.3	10.4	176
2029	17.6	118.7	35.1	8.3	15.4	11.1	206
Cumulative Total	101.5	597.0	258.6	52.6	45.3	82.1	1,137
Approx. Share of Households with ASHP in 2029 (%) *	6.9%	20.5%	42.8%	8.8%	10.0%	29.4%	18.0%
Approx. Share of Legacy Electric Heat Replacement **	16%	15%	6%	9%	10%	5%	13%

^{*} Assumes one ASHP/household; Based on Moody's Analytics October 2019 forecasts of number of households by state

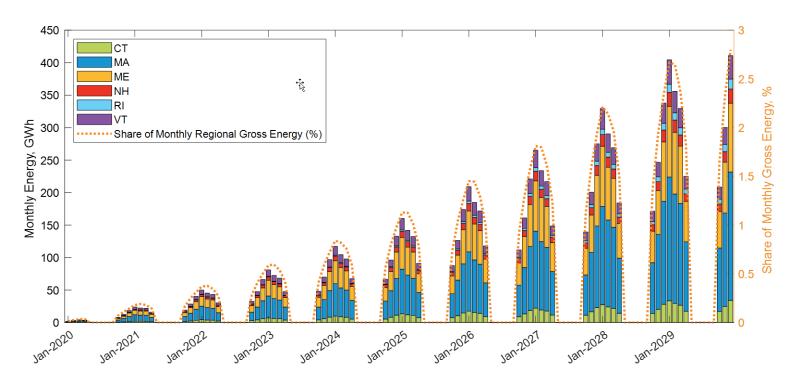
^{**} Source: U.S. Census Bureau, Selected Housing Characteristics, 2013-2017 American Community Survey 5-year Estimates

ASHP Adoption Forecast

Excludes Assumed Legacy Electric Heat Replacement

 The values below are net of ASHP installations assumed to replace legacy electric resistance heat and are used to estimate energy and demand impacts

Year	Annual ASHP Installs (Thousands)						
	СТ	MA	ME	NH	RI	VT	ISO-NE
2020	4.2	19.6	12.22	2.73	0.4	5.4	42
2021	4.8	23.5	15.04	3.1	0.5	5.8	53
2022	5.6	28.2	18.33	3.4	0.8	6.4	63
2023	6.4	33.8	21.62	3.8	1.2	6.8	74
2024	7.3	40.5	25.85	4.3	1.8	7.4	87
2025	8.4	48.6	27.1	4.8	2.7	8.0	100
2026	9.7	58.4	28.5	5.4	4.1	8.6	115
2027	11.2	70.1	29.9	6.0	6.2	9.2	133
2028	12.8	84.1	31.4	6.8	9.2	9.8	154
2029	14.8	100.9	33.0	7.6	13.8	10.5	181
Cumulative Total	85.3	507.5	243.0	47.9	40.8	77.9	1,000

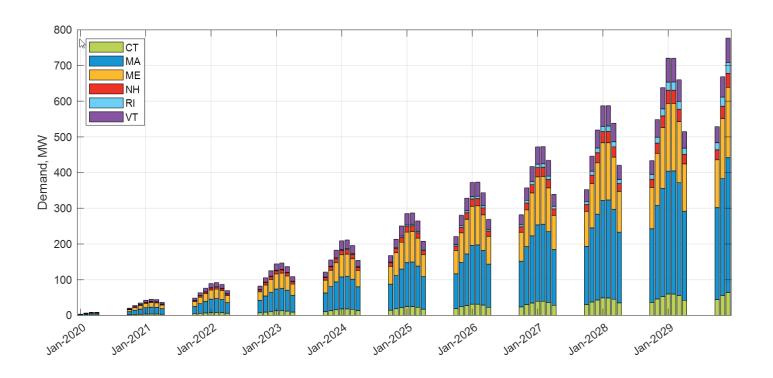

DRAFT ENERGY AND DEMAND FORECASTS

Estimating Energy Impacts of ASHP Adoption

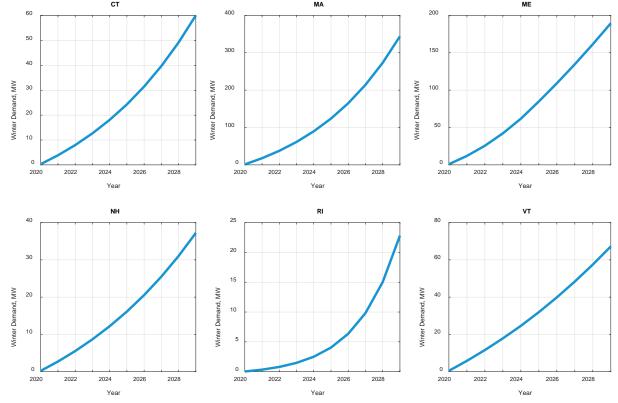
Use of Response Functions in Load Forecast

- The process for estimating energy impacts is as follows:
 - The daily HDDs for each winter month over the period 1996 -2015 (i.e., the "normal weather" period) used for monthly energy modeling is used to estimate monthly energy impacts
 - Input daily HDDs to each energy response function and multiply by the monthly ASHP penetration;
 - Differences in response function outputs reflect the resulting daily energy due to ASHP adoption, which are then summed for each year
 - The average of the resulting 20 monthly energy differences is the estimated monthly energy impact of ASHP adoption for that month
 - Energy will be grossed up by 6% to account for assumed transmission and distribution losses, consistent with other forecast processes
- Refer to slides 38-40 of the ISO's <u>Long-Term Load Forecast Methodology</u> <u>Overview</u> for background information on the methodology used for the energy forecast

Monthly Energy (GWh)



Estimating Demand Impacts of ASHP Adoption


Use of Response Functions in Load Forecast

- The process for estimating demand impacts is as follows:
 - The weekly weather distributions used to generate weekly load forecast distributions, which include HDDs, will be used to estimate monthly demand impacts
 - Input weekly distributions of HDDs (for each week in a given month) to each response function for demand, and multiply by the monthly ASHP penetration;
 - Differences in response function outputs are calculated, resulting in a weekly distribution of demand impacts;
 - The resulting weekly distribution of demand impacts is added to the weekly load distributions generated by each monthly demand model
 - The gross load percentiles (i.e. the "50/50" and "90/10") are then calculated for each week of the load forecast
 - Demand will be grossed up by 8% to account for assumed transmission and distribution losses, consistent with other forecast processes
- Refer to slides 41-46 of the ISO's <u>Long-Term Load Forecast Methodology</u> <u>Overview</u> for background information on the methodology used for the demand forecast

Monthly Demand (MW)

State-by-State Winter Peak Demand (MW)

Next Steps

- Stakeholders are encouraged to provide any additional information or feedback regarding the forecast by January 17, 2019
 - Any resulting changes will be reflected in the final heating electrification forecast that will be shared with the LFC at the February 10, 2020 meeting
 - In the absence of additional guidance, ISO will use the existing draft ASHP adoption forecast
- Final forecast will be published as part of 2020 CELT

Questions

