

AGO Alternative Storage EAS Revenue Estimates

NEPOOL Markets Committee September 8-10, 2020

AGO review of the Storage ORTP finds three shortcomings each of which inflate the ORTP

- **1.** Losses. CEA assumes all storage inefficiencies are incurred on discharge.
 - Not how batteries work electrochemically; losses occur on charge and discharge.
 - This assumption will (a) reduce effective battery size; (b) require excessive derating for qualification; and (c) reduce EAS revenues.
- 2. Sizing. CEA relies on an uncommon 150 MW-ac / 300 MWh-dc (258 MWh-ac) battery rating. Extreme assumption about losses reduces effective energy-rating below a reasonable level.
- **3. Dispatch.** The deterministic spreadsheet model CEA relied on may be easy to understand, but yields materially lower EAS revenues compared to alternative techniques.

Effect: These shortcomings drive unreasonably low EAS revenue offsets.

CEA assumptions minimize the effective size of a battery with a "2-hour duration"

- CEA adopts an uncommon battery specification with an AC-rating for capacity but DC-rating for energy (150 MW-ac / 300 MWh-dc).
 - The extreme losses assumption results in a 258 MWh-ac effective output.
- Alternative assumptions would result in larger battery and higher revenue.

	Bought from Grid	Charging Losses	Held in Cells	Discharge Losses	Returned to Grid	% of CEA
	MWh-ac		MWh-dc		MWh-ac	Rating
All Losses on Discharge	300.0	0.0	300.0	-42.0	258.0	
Symmetric Losses	323.5	-23.5	300.0	-21.8	278.2	108%
All Losses on Charge	348.8	-48.8	300.0	0.0	300.0	116%
AC Rated Battery	348.8	-25.3	323.5	-23.5	300.0	116%

• Battery size also affects derating for qualification, which is based on maximum output over 2 hours. Higher MWh-ac rating = higher qualification.

Deterministic modeling does a poor job of estimating revenues for energy storage

- Modeling energy storage is difficult given lack of benchmarks and quickly evolving marketplace.
- Transparent assumptions improve ORTP process.
- EAS revenue estimates should reflect earnings associated with a reasonably competent developer operating in the assumed markets.
- CEA revenue estimates do not reflect what a reasonably competent storage resource could earn in the energy and TMSR markets.

Issues with deterministic dispatch of energy storage are intrinsic to the tool itself

- Issues include (but are not limited to):
 - Charging only in fixed windows (not necessarily periods when prices are expected to be lowest).
 - Discharging when prices reach a fixed, very high threshold (not adjusted for time-of-day or season). Often misses higher values later in the day.
 - Limiting cycling to once-per-day, even if it would be advantageous to cycle more than once.
 - Dispatching myopically without regard to revenues in other markets.
- These issues are a problem with the *tool* itself not with underlying data, degrees of information, or the ability to forecast.

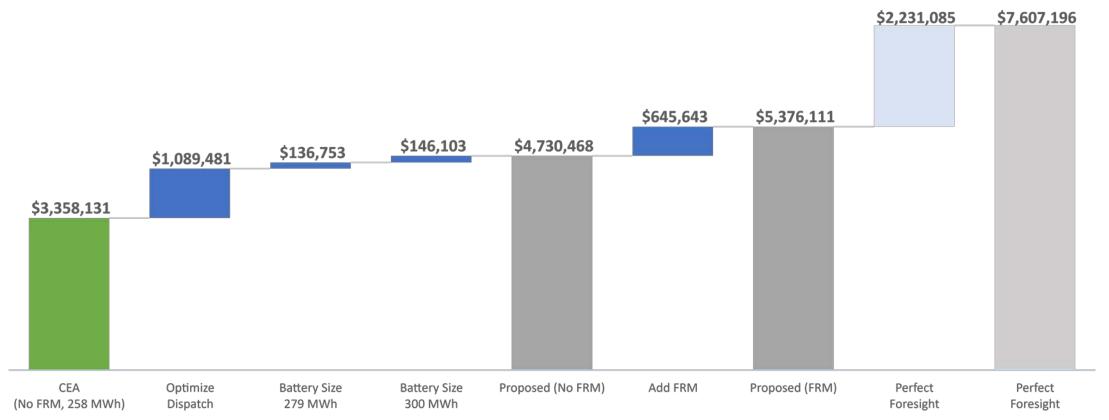
Basic optimization models generate more reasonable EAS revenue offsets

- MA AGO developed and ran a basic linear optimization model to simulate ESS dispatch and calculate EAS revenues.
 - Model maximizes energy and TMSR revenues (including FRM as applicable).
 - Model approximates the approaches laid out by the EMM in its ER20-308 [1] comments but relies on current CEA pricing data.
 - Model returns efficient dispatch schedules and EAS revenues that can be cleanly substituted into the CEA DCF model.
- Two methodologies:
 - Battery has perfect foresight of hourly RT LMP and TMSR price. (Analogous to EMM's Approach 1.)
 - Battery is optimally scheduled based on known DA LMP and expected TMSR prices but is run in real-time and earns RT LMP, TMSR. (Analogous to EMM's Approach 2.)
 - When FRM available, model constrains dispatch to ensure energy availability in on-peak hours.
- Model formulation in Appendix. AGO offers the model itself, model outputs, and a memorandum summarizing the model's formulation in the interest of transparency.

[1] EMM Comments at 6 <u>https://elibrary.ferc.gov/eLibrary/filelist?accession_num=20191112-5337&optimized=false</u>

AGO results suggest a reasonable developer could earn \$31-36/kW (vs. CEA's \$22-32/kW)

Comparison of EAS Revenue Estimates for Energy & TMSR (2025\$)


	Revenu	ue per KW-ac	Change from CEA		
Source	w FRM	No FRM	w FRM	No FRM	
CEA	\$32.05	\$22.39			
AGO					
Perfect Knowledge	\$50.71	\$50.46	58%	125%	
DAM Knowledge	\$35.84	\$31.54	12%	41%	
EMM*					
Perfect Knowledge	\$56.00		75%	150%	
DAM Knowledge	\$30.00		-6%	34%	
DAM + CTS		\$34.00	6%	52%	

* EMM values based on slightly different timeframe (Mar-2017 through Feb-2019) and do not adjust for scarcity. Adjusting for scarcity would reduce EMM estimates by about \$1.5/kW.

Improved dispatch increases EAS revenue by \$1.1 million; size corrections add another \$283k

Changes in Battery Revenues by Adjustment (2025\$)

AGO estimates, assuming DAM information, are a reasonable middle-ground for the EAS Offsets

- AGO Proposes Energy and TMSR EAS revenues of:
 - Assuming FRM Maintained: \$5,375,295 (\$35.84/kW-year)
 - Assuming FRM Sunset: \$4,730,619 (\$31.54/kW-year)
- Overall EAS revenue estimates should also include CEA's estimate of regulation revenues (\$22.84/kW-year).
- AGO estimates, based on DAM outcomes, offer a reasonable middle-ground between CEA's very low values and revenues assuming perfect foresight.
 - AGO model doesn't require sophisticated intraday dispatch or complex forecasting. AGO estimates require known DAM energy price curves and a generic assumption of expected TMSR prices.
 - AGO approach, and results, comport with EMM's expectations of earnings available to a "reasonably competent" storage operator.
- More advanced dispatch schemes could yield revenues in excess of the AGO proposed values.
 - There is significant headroom between perfect dispatch and the AGO proposed value.
 - Participation in other markets (e.g. regulation) could generate more EAS revenue.

Appendix

LP Formulation

$max \sum_{t=0}^{T} (Q_{EA,t} \times P_{LMP,t} + Q_{TMSR,t} \times P_{TMSR,t})$	Maximize revenues from energy and TMSR. Q is rated as MWh-ac
$0 \leq I_t \leq ESS_{Charge Rate}$	Limits Battery Injections
$0 \leq W_t \leq ESS_{Discharge Rate}$	Limits Battery Withdrawals
$\sum_{t=0}^{T} (I_t) \leq \text{Total Injection Limit}$	Limits total cycling to an average of one-per-day
$0 \leq SOC_t \leq SOC_{max}$	Limits quantity of stored energy.
$SOC_t = SOC_{t-1} + I_{t-1} - W_{t-1}$	Keeps track of energy across time.
$Q_{EA,t} = \eta W_t - \frac{I_t}{\eta}$	Calculates ac-rated output based on charging and discharging in each period.
$0 \le Q_{TMSR,t} \le \eta SOC_t$	Constrains TMSR sales to available energy
$Q_{TMSR,t} \leq \eta W_t - Q_{EA,t}$	Further constrains TMSR to avoid double-counting with energy arbitrage sales.
If $(FRM Hour_t = OnPeak)$ and $(FRM Threshold_t < P_{LMP,t})$ Then $Q_{TMSR,t} = 150$	Sets quantity of TMSR to 150 MWh in on-peak hours.

Battery Specification & Operating Parameters

Parameter	Units	Value	Notes
Capacity	MW-ac	150	Same as CEA, Measured at the Revenue Meter
Stored Energy	MWh-ac	300	Measured at the Revenue Meter (CEA assumes 258 MWh deliverable)
Round-trip Efficiency	%	86%	Same as CEA
One-way Efficiency	%	92%	Assumed Symmetric; $92\% = \sqrt{86\%}$
TMSR Capacity	MW-ac	150	Same as CEA
Total Study Injection Limit	GWh-ac	3.285	Same as CEA; = 365 Days x 3 Years x 300 MWh-ac