Transmission Planning for the Clean Energy Transition

ISO-NE PUBLIC

ISO new england

Dan Schwarting

SUPERVISOR, TRANSMISSION PLANNING

Presentation Overview

- Review of September PAC Presentation
- Tradeoffs: Reliability and Flexibility vs. Transmission Cost

ISO-NE PUBLIC

- Pilot Study Proposal
- Feedback & Next Steps

REVIEW OF SEPTEMBER PAC PRESENTATION

New Challenges in Transmission Planning

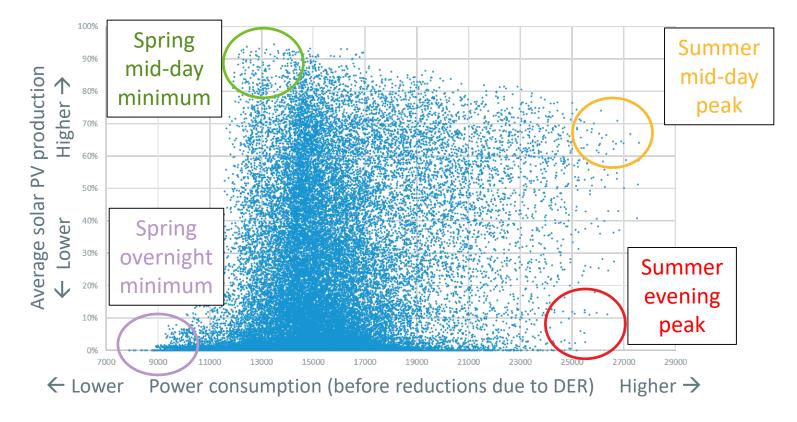
- By 2030, New England's power system is expected to have much higher levels of clean energy integration than today
 - Approximately 7,800 MW of distributed photovoltaic (PV) resources
 - 3,100 MW of offshore wind with contracts signed or under negotiation
 - New HVDC interconnection to Quebec
 - Increased development of battery energy storage
- These trends will require changes in New England's transmission planning studies
 - Different system conditions to be studied
 - New approaches to data collection
- Topic introduced in a September 24, 2020 PAC presentation
 - Since September, this effort has been renamed to avoid confusion with the "Future Grid" efforts underway at NEPOOL committees

Trends Requiring New Study Approaches

- Decreasing net load in mid-day periods
- Potential for distributed energy resources (DER) to trip due to transmission system faults
- Stability performance with higher levels of DER
- Variability of wind generation, especially offshore wind
- Low-inertia conditions due to increased replacement of synchronous generators by power electronics

Feedback from September PAC Presentation

- Many stakeholders provided comments during and after the September PAC presentation
- Feedback related to study conditions
 - How likely are the proposed study conditions to actually occur?
 - Can operational measures ensure reliability in these conditions?
- Feedback related to DER and storage policies
 - Would the implementation of voltage and/or frequency control on DERs mitigate any reliability concerns?
 - Is synthetic inertia on power-electronic-based generation helpful?
 - Could better rules around behavior of storage assets address peak and minimum load conditions?
 - How can System Planning, Operations, and Markets better coordinate to address concerns related to transmission system reliability?


ISO-NE PUBLI

TRADEOFFS: RELIABILITY AND FLEXIBILITY VS. TRANSMISSION COST

Probability and Frequency of Study Conditions

Recall from the September PAC presentation: each blue dot represents a single hour experienced between 2012 and 2018. We have proposed to study the "corners," at the intersection of high/low load and high/low solar output.

Infrequent, But Not Improbable, Conditions

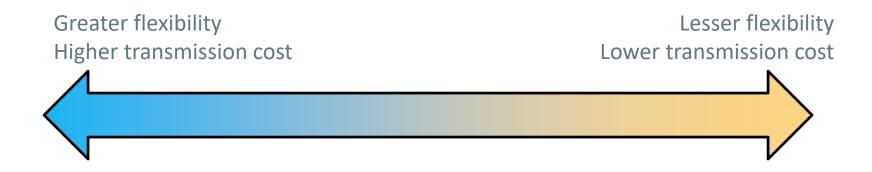
Example: Spring Daytime Minimum (proposed assumption: 12000 MW, 90% PV)

Date	Power Consumption (before reductions from PV)	PV Output (% of nameplate capacity)
April 20, 2014	12405 MW	89%
April 19, 2015	12375 MW	86%
April 17, 2016	12300 MW	90%
April 24, 2016	12304 MW	93%
April 23, 2017	12296 MW	92%
April 21, 2018	12256 MW	85%
April 22, 2018	12233 MW	93%
May 11, 2019	12292 MW	88%
May 18, 2019	12477 MW	86%

While these conditions are not frequent on a day-to-day basis, they are not necessarily improbable. These conditions occur every year.

ISO-NE PUBLIC

Tradeoffs: Reliability and Flexibility vs. Cost


- Should we plan for a condition that happens approximately once per year?
 - A transmission system that can accommodate this condition would allow us to take full advantage of the output of renewable resources installed on the ISO-NE electric system – but might require additional capital investment.
- If we do not plan for this condition, ISO-NE Operations will need to take actions to maintain reliability. These actions:
 - Must be feasible for operators to implement
 - Must be easily understood and not overly complex
 - Could increase emissions or out-of-merit generation costs

ISO-NE PUBLIC

10

Tradeoffs: Reliability and Probability vs. Cost

• Any one of a spectrum of assumptions could be chosen:

 Stakeholder input will help ISO-NE determine the appropriate point on this spectrum to study

ISO-NE PUBLIC

11

• However, we cannot make this decision without full knowledge of the tradeoffs!

Quantifying the Tradeoffs

- To quantify these tradeoffs, we will need approximate answers to the following:
 - What reliability concerns exist at the "corner" conditions?
 - Approximately how expensive are the transmission investments to fully address these reliability concerns?
 - During how many hours per year will these concerns arise?
 - What operational measures would be available to maintain reliability without additional transmission system investments?
 - What is the extent of these operational measures?
 - Complexity and feasibility
 - Frequency, on an hours per year basis
 - What policy changes could be helpful in maintaining transmission system reliability?

ISO-NE PUBLI

12

• Some may be outside ISO-NE's purview

PILOT STUDY PROPOSAL

Pilot Study Overview

- To quantify these trade-offs, ISO-NE proposes a "pilot" study of the conditions described in the September PAC presentation
- This pilot study will *not* be a Needs Assessment, Solutions Study, or competitive transmission RFP
 - Purpose is to test out assumptions, and quantify the tradeoffs between transmission investment and system flexibility
 - Reliability problems found would not be immediately addressed in a Solutions Study or competitive RFP
 - Any transmission solutions proposed would be roughly representative only, and costs would be rough order-of-magnitude estimates
 - Results of the pilot study would inform decisions on assumptions to be used in future Needs Assessments
- DER data collection efforts will proceed in parallel with the pilot study, with the study using the best assumptions possible in the absence of actual data

ISO-NE PUBLIC

Why Conduct a Pilot Study?

- ISO-NE and stakeholders must make an informed decision to choose a point on the flexibility/transmission cost spectrum
 - Does a small, targeted transmission investment gain us significantly better flexibility?
 - Does a small reduction in flexibility (for example, curtailing renewables for only a few hours per year) lead to large reductions in transmission upgrade costs?
- If policies regarding DER are pursued, they should be targeted at the most effective changes in DER operation
 - For example: If the pilot study finds that fault ride-through is not a major concern, pursuing changes in protection settings would be a lower priority

ISO-NE PUBLIC

15

Pilot Study Scope

- Pilot study would take a "10,000-foot view" of the entire New England system, rather than any one portion of it
 - Goal is to see the overall trend of system behavior and reliability concerns, not to identify exact needs or exact system upgrades
 - Base cases will represent a likely dispatch for a given condition, rather than attempting to stress any particular portion of the system through generator outages
 - Due to recent study automation efforts, steady-state N-1-1 analysis on the entire system is feasible, and will be performed
 - Stability analysis will concentrate on faults on the 345 kV system, and 230 kV or 115 kV faults that are especially impactful
 - Limited electro-magnetic transient (EMT) study work may be pursued
- Pilot study's main goal would be to establish assumptions for future Needs Assessments

ISO-NE PUBLIC

 Subsequently, individual Needs Assessments would look at each portion of New England in more detail

Pilot Study Scope

- The results of the pilot study will be most useful if the study begins from fairly conservative conditions
 - We will only observe the trade-offs that are necessary under these conditions if they are studied and examined
- The pilot study will investigate potential paths to address reliability concerns through any or all of:
 - Transmission system investment
 - Operational measures
 - Policy changes
- By testing the sensitivity of the reliability concern to system conditions (solar output, wind output, load level), we can approximate the exposure to the concern (in hours per year)

ISO-NE PUBLI

Proposed Pilot Study Assumptions: Load & Solar

Condition to Study	Power Consumption	Solar Output	Forecasted Net Load in 2029
Spring/Fall Weekend Nighttime (minimum consumption)	8,000 MW	0% x 7,796 MW = 0 MW	8,000 – 0 = 8,000 MW
Spring/Fall Weekend Mid-Day	12,000 MW	90% x 7,796 MW	12,000 – 7,016 =
(minimum net load)		= 7,016 MW	4,984 MW
Summer Weekday Mid-Day (maximum consumption)	100% of 90/10 forecast	40% x 7,595 MW	27,462 – 3,038 =
	= 27,462 MW	= 3,038 MW	24,424 MW
Summer Weekday Evening	95% of 90/10 forecast	10% x 7,595 MW	26,089 – 759.5 =
(maximum net load)	= 26,089 MW	= 759.5 MW	25,329 MW

All values based on 2020 CELT report. Solar nameplate of 7,796 MW is based on endof-year capacity for 2030, and 7,595 MW is based on capacity expected by June 2030.

Proposed Pilot Study Assumptions: Wind

- Studies will examine the end of the output range that is conservative for the condition studied
 - High wind generation when low inertia may be a concern
 - Low wind generation where load serving may be a concern

Condition to Study	Onshore Wind Generation	Offshore Wind Generation
Spring Weekend Nighttime (minimum consumption)	5% (steady-state) 65% (stability)	15% (steady-state) 90% (stability)
Spring Weekend Mid-Day (minimum net load)	55%	60%
Summer Weekday Mid-Day (maximum consumption)	5% (steady-state) 30% (stability)	5% (steady-state) 90% (stability)
Summer Weekday Evening (maximum net load)	5%	5%

ISO-NE PUBLIC

Proposed Pilot Study Assumptions: Policy

- Certain study assumptions are affected by policies both within and outside of ISO-NE's purview
 - Distribution system power factor
 - DER voltage and frequency control capability
 - DER fault ride-through capability
- Initially, the pilot study will assume a "business-as-usual" approach to these policies
 - Where changes to the policies would be beneficial, they will be considered as mitigating measures
 - ISO-NE would need reasonable assurance that these policies would be implemented and enforced before they could be relied upon in future Needs Assessments

FEEDBACK & NEXT STEPS

Feedback and Next Steps

- Feedback on the pilot study proposal may be submitted to pacmatters@iso-ne.com by December 4, 2020
- Next Steps:
 - Development of the pilot study base cases
 - Review of the pilot study base cases with PAC
 - Pilot study analysis will begin in late 2020 or early 2021
 - In parallel with the pilot study, outreach to distribution providers regarding DER data collection
 - Further discussion on open questions, and on the pilot study results and tradeoffs on future Needs Assessment assumptions, at future PAC meetings