JULY 22, 2021 | PAC WEBEX

# new england

2021 Economic Study: Future Grid Reliability Study Phase 1

Preliminary Production Cost Results – Part 2

**ISO-NE PUBLI** 

Patrick Boughan & Richard Kornitsky

SPECIAL STUDIES AND INTERREGIONAL PLANNING

# Introduction

- On March 12, 2021, NEPOOL submitted the Future Grid Reliability Study Phase 1 as a 2021 Economic Study Request
- On April 1, 2021, ISO New England accepted the request and will perform the FGRS as the 2021 Economic Study
- Part one of study assumptions were presented by the ISO at the <u>April 2021 PAC meeting</u>; part two at the <u>May 2021 PAC meeting</u>; part three at the <u>June 2021 PAC meeting</u>
- Today's presentation will cover the second round of initial production cost simulation results. Part one of the preliminary results were presented at the <u>June PAC meeting</u>

# Introduction, cont.

- "It's tough to make predictions, especially about the future." Yogi Berra
- The FGRS will provide directional results and trends to help guide discussion on how to prepare for the future grid

## **2021 Economic Study Past Presentations & Materials**

| Presentation & Materials                                 | Date (Link)           |
|----------------------------------------------------------|-----------------------|
| ISO-NE's Economic Studies Reference Guide                |                       |
| Production Cost Simulations Preliminary Results (Part 1) | <u>June 17, 2021</u>  |
| High-level draft scope of work and assumptions (Part 3)  | <u>June 17, 2021</u>  |
| High-level draft scope of work and assumptions (Part 2)  | <u>May 14, 2021</u>   |
| High-level draft scope of work and assumptions (Part 1)  | <u>April 14, 2021</u> |
| FGRS Assumptions Table Submitted to ISO-NE               | <u>March 31, 2021</u> |
| FGRS Framework Document Submitted to ISO-NE              | March 31, 2021        |

- Further historical presentations made at the joint MC/RC meetings in 2020 and 2021 can be found on the <u>ISO website</u>
- Acronyms used in this presentation can be found in Appendix II

## **MATRIX SCENARIOS**

Assumption Refresher



## How to Read the Matrix Table & Scenario Names

There are three types of assumptions in FGRS that are paired together in different combinations to create the matrix scenarios:

- Scenario (S) Assumptions Retirements, Onshore Wind Additions, Threshold Price Order, Transmission Topology, and Load Profiles
  - Note: there are other assumptions, but they are in common amongst Scenarios 1-3
- Load (L) Assumptions Gross Load, Energy Efficiency, Heating and Transportation Electrification Magnitudes
- *Resource (R) Assumptions* Solar, Offshore Wind, and Energy Storage Additions
- **Example:** Scenario 1, Load 2, Resource 3 (S1\_L2R3) has:
  - Scenario 1's Retirements, Onshore Wind Additions, Threshold Price Order, Transmission Topology, Load Profile
  - Scenario 2's Gross Load, Energy Efficiency, Heating and Transportation Electrification Magnitudes

**ISO-NE PUBLI** 

- Scenario 3's Solar, Offshore Wind, and Energy Storage Magnitudes

# **GridView Matrix**

#### **Describes 40\* Scenarios Reading "Down and Across"**

|                                                                                                                              | (Resource 1)<br>OSW 8,000 MW<br>PV 16,000 MW**<br>BESS 2,000 MW**                                                                                   | (Resource 2)<br>OSW 8,000 MW<br>PV 22,000 MW**<br>BESS 3,940 MW**                                                                                   | (Resource 3)<br>OSW 17,000 MW<br>PV 28,000 MW**<br>BESS 600 MW**                                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (Load 1)<br>Buildings 9,600 GWh<br>Transport 7,300 GWh                                                                       | (5 Scenarios)<br>Matrix Scenario 1 plus<br>Alternatives A, C, D and E<br>Scenario 2 (Resource 1 and Load 1)*<br>Scenario 3 (Resource 1 and Load 1)* | (3 Sensitivity Scenarios)<br>Scenario 1 (Resource 2 and Load 1)<br>Scenario 2 (Resource 2 and Load 1)<br>Scenario 3 (Resource 2 and Load 1)         | (3 Sensitivity Scenarios)<br>Scenario 1 (Resource 3 and Load 1)<br>Scenario 2 (Resource 3 and Load 1)<br>Scenario 3 (Resource 3 and Load 1)     |  |  |  |
| (Load 2)<br>Buildings 6,600 GWh<br>Transport 18,500 GWh                                                                      | (3 Sensitivity Scenarios)<br>Scenario 1 (Resource 1 and Load 2)<br>Scenario 2 (Resource 1 and Load 2)<br>Scenario 3 (Resource 1 and Load 2)         | (5 Scenarios)<br>Matrix Scenario 2 plus<br>Alternatives A, C, D and E<br>Scenario 1 (Resource 2 and Load 2)*<br>Scenario 3 (Resource 2 and Load 2)* | (3 Sensitivity Scenarios)<br>Scenario 1 (Resource 3 and Load 2)<br>Scenario 2 (Resource 3 and Load 2)<br>Scenario 3 (Resource 3 and Load 2)     |  |  |  |
| (Load 3)<br>Buildings 38,900 GWh<br>Transport 40,000 GWh                                                                     | (3 Sensitivity Scenarios)<br>Scenario 1 (Resource 1 and Load 3)<br>Scenario 2 (Resource 1 and Load 3)<br>Scenario 3 (Resource 1 and Load 3)         | (3 Sensitivity Scenarios)<br>Scenario 1 (Resource 2 and Load 3)<br>Scenario 2 (Resource 2 and Load 3)<br>Scenario 3 (Resource 2 and Load 3)         | (6 Scenarios)<br>Scenario 3 plus<br>Alternatives A, B, C, D and E<br>Scenario 1 (Resource 3 and Load 3)*<br>Scenario 2 (Resource 3 and Load 3)* |  |  |  |
| * Additional matrix scenarios ** "DER" values in previous presentations were split to better reflect assumptions spreadsheet |                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                 |  |  |  |
|                                                                                                                              |                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                 |  |  |  |

# **Naming Convention for Cases**

|                                                    | R1<br>OSW 8,000 MW<br>PV 16,000 MW<br>BESS 2,000 MW                             | R2<br>OSW 8,000 MW<br>PV 22,000 MW<br>BESS 3,940 MW                             | R3<br>OSW 17,000 MW<br>PV 28,000 MW<br>BESS 600 MW                                           |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| L1<br>Buildings 9,600 GWh<br>Transport 7,300 GWh   | S1_L1R1, S2_L1R1*, S3_L1R1*<br>S1_L1R1_A<br>S1_L1R1_C<br>S1_L1R1_D<br>S1_L1R1_E | <mark>S1_L1R2</mark><br>S2_L1R2<br>S3_L1R2                                      | <mark>S1_L1R3</mark><br>S2_L1R3<br>S3_L1R3                                                   |  |  |  |  |
| L2<br>Buildings 6,600 GWh<br>Transport 18,500 GWh  | <mark>S1_L2R1</mark><br>S2_L2R1<br>S3_L2R1                                      | S1_L2R2*, S2_L2R2, S3_L2R2*<br>S2_L2R2_A<br>S2_L2R2_C<br>S2_L2R2_D<br>S2_L2R2_E | <mark>S1_L2R3</mark><br>S2_L2R3<br>S3_L2R3                                                   |  |  |  |  |
| L3<br>Buildings 38,900 GWh<br>Transport 40,000 GWh | <mark>S1_L3R1</mark><br>S2_L3R1<br>S3_L3R1                                      | <mark>S1_L3R2</mark><br>S2_L3R2<br>S3_L3R2                                      | S1_L3R3*, S2_L2R2*, S3_L3R3<br>S3_L3R3_A<br>S3_L3R3_B<br>S3_L3R3_C<br>S3_L3R3_D<br>S3_L3R3_E |  |  |  |  |
| * Additional matrix scenarios                      |                                                                                 |                                                                                 |                                                                                              |  |  |  |  |

# **Import Priority Threshold Prices**

#### **Threshold Prices Prioritizing Imports:**

- Triggers exports, curtail renewables when export capability is exhausted
- Referred to as "Import Priority"
- Used in S1
- Note: only Alternative A will have an additional tie-line to facilitate energy banking

| Price-Taking Resource                   | Threshold Price<br>(\$/MWh) | Priority        |
|-----------------------------------------|-----------------------------|-----------------|
| Imports on New Tie Line                 | -5                          | First Curtailed |
| Trigger for Exports on New Line         | -25                         |                 |
| Onshore Wind                            | -35                         |                 |
| Offshore Wind                           | -40                         |                 |
| FCM and Energy-only PV                  | -45                         |                 |
| Imports from Canada over Existing Lines | -50                         |                 |
| NECEC                                   | -99                         | Ļ               |
| Behind-the-Meter PV                     | -100                        | Last Curtailed  |

Threshold prices are used to facilitate the analysis of load levels where the amount of \$0/MWh resources exceeds the system load

- They are not indicative of "true" cost, expected bidding behavior or the preference for one type of resource over another
- Use of a different order for threshold prices than indicated will produce different outcomes, particularly curtailment by resource

## **Load Assumptions**

\*Total Peak load is the max coincident peak value for summer and winter after profiles are combined \*\*Net Peak load is the total load after the BTM profile is added to the load profile † BTM PV is a resource assumption but added to this slide to show 'net' load profile effect †+ BTM PV could be curtailed during simulation, so final Net Min Load could be higher

10

| Item                  | Resource                       | S1_L1R1<br>(Peak, MW) | S1_L1R1<br>(Energy, TWh) | S1_L2R2<br>(Peak, MW) | S1_L2R2<br>(Energy, TWh) | S1_L3R3<br>(Peak, MW) | S1_L3R3<br>(Energy, TWh) |
|-----------------------|--------------------------------|-----------------------|--------------------------|-----------------------|--------------------------|-----------------------|--------------------------|
| А                     | Gross Summer Peak              | 33,707                | 170 6                    | 33,707                | 172.6                    | 33,707                | 172 6                    |
| В                     | Gross Winter Peak              | 27,970                | 172.0                    | 27,970                | 172.0                    | 27,970                | 1/2.0                    |
| С                     | Energy Efficiency              | 6,777                 | 37.7                     | 6,777                 | 37.7                     | 6,777                 | 37.7                     |
| D                     | Transportation Electrification | 1,817                 | 7.3                      | 3,578                 | 17.9                     | 9,956                 | 40.0                     |
| E                     | Heating Electrification        | 5,214                 | 9.6                      | 2,991                 | 5.4                      | 22,250                | 38.9                     |
| F<br>(=A – C + D + E) | Total Summer Peak*             | 28,060                |                          | 30,316                |                          | 35,711                |                          |
| G<br>(=B – C + D + E) | Total Winter Peak*             | 25,767                | 151.3                    | 26,971                | 158.2                    | 43,816                | 213.8                    |
| H<br>(=A – C + D + E) | Total Minimum Load*            | 11,202                |                          | 11,863                |                          | 14,102                |                          |
| J                     | BTM Solar <sup>+</sup>         | 7,681                 | 10.3                     | 11,899                | 15.6                     | 12,671                | 16.9                     |
| K (=F – J)            | Net Summer Peak**              | 26,555                |                          | 28,317                |                          | 33,162                |                          |
| L (=G – J)            | Net Winter Peak **             | 25,767                | 141.1                    | 26,971                | 142.7                    | 43,814                | 196.9                    |
| M (=H − J)            | Net Minimum Load**++           | 8,562                 |                          | 6,745                 |                          | 8,427                 |                          |

### **Resource Assumptions**

|               | R1<br>Nameplate<br>MW | R1<br>Energy<br>TWh** | R2<br>Nameplate<br>MW | R2<br>Energy<br>TWh** | R3<br>Nameplate<br>MW | R3<br>Energy<br>TWh** |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Onshore Wind* | 2,585                 | 8.56                  | 2,585                 | 8.56                  | 2,585                 | 8.56                  |
| Offshore Wind | 8,029                 | 32.67                 | 8,029                 | 32.41                 | 16,662                | 69.95                 |
| PV (BTM)      | 7,681                 | 10.29                 | 11,899                | 15.56                 | 12,671                | 16.90                 |
| PV (Utility)  | 8,091                 | 10.84                 | 10,650                | 11.55                 | 15,467                | 20.65                 |

\*Onshore wind is considered a scenario assumption, and does not change between S1 runs \*\*Energy values are all pre-curtailment

|                 | R1<br>(Capacity, MW) | R1<br>(Capacity, GWh) | R2<br>(Capacity, MW) | R2<br>(Capacity, GWh) | R3<br>(Capacity, MW) | R3<br>(Capacity, GWh) |
|-----------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|
| Battery Storage | 2,000                | 7.5                   | 3940                 | 12.5                  | 600                  | 2.3                   |
| Pumped Storage  | 1,763                | 11.5                  | 1,763                | 11.5                  | 1,763                | 11.5                  |

# LMPs during an Energy Shortfall

- In FGRS, some scenarios will have a shortfall of resources to serve load. During these times an LMP of \$5,455/MWh is applied
- \$5,455/MWh is the Capacity Performance Payment Rate June 1, 2025 and thereafter under the Tariff (<u>III.13.7.2.5</u>). The Capacity Performance Payment Rate is imposed if a Capacity Scarcity Condition occurs. This is analogous to an energy shortfall is a Production Cost Simulation

# FOLLOW-UP FROM JUNE PAC

Responses to stakeholder comments/questions and other updates from June results presentation



# **Dispatchable Generation During Curtailment**

- During the June PAC presentation ISO presented a series of graphs that showed the impact of "profiled" resources (wind, solar, hydro) and demand (gross load, energy efficiency, electric vehicles, etc.). These profiles showed dispatchable units still producing during times of curtailment (when "zerocost" resources are available)
  - ISO investigated this and there was a graphing issue causing some of these results
  - However, sometimes dispatchable units are on during curtailment of resources due to unit commitment constraints

# **Definition of LSEEE**

- LSEEE is calculated by summing, at each location, the load multiplied by the corresponding LMP in each hour
  - Note: Negative LMPs will lower annual LSEEE
- LSEEE is a metric that was historically intended to represent the cost of energy to customers. This metric now doesn't account for many costs to consumers outside the wholesale LMP
- This metric may have less relevance during the 2021 economic study since the total cost to consumers is not fully represented

# **Revision to Reflect 2019 Weather Year**

- Since the June PAC meeting presentation on preliminary results, it was discovered the 2015 weather year load shape had continued to be used
- Updated results in today's presentation fully reflect the 2019 weather year

# The Distribution of Photovoltaics in Resource 3

- The solar PV resources as part of resource set 3 (R3) are distributed as follows by RSP zone:
  - For states where there is a single RSP zone PV is allotted as it was in the MA Decarbonization Roadmap study for the year 2040
  - For states where there is more than one RSP zone PV is allotted by RSP zone following the distribution of queue projects as of April 1, 2021
- PV distributions for each resource set is detailed in the Appendix I

## Alternative Scenario A: Energy Banking and Return

- Investigate banking of carbon free energy via Québec
  - One new tie line to the CMA/NEMA RSP zone
    - Function is only to facilitate bi-directional transmission for banking
    - Unconstrained capability in both directions
- In the first iteration exports to Québec on the new tie line
- In the second iteration, banked energy is made available
  - Banked energy made available at times of highest combined cycle dispatch in first iteration
  - Expectation is all the banked energy can be absorbed in New England

## Banked Energy Returned Displaces Least Efficient Combined Cycle Generation





## LOAD & RESOURCE PROFILES

Monthly Profiles



# **Scenario 1 Load and Resource Profiles**

- The following slides for January and April illustrate:
  - In scoping this study, proponents requested various amounts of resources and loads and these profiles
    - Provide a visual indication of their magnitudes
    - How much customer load energy is served by dispatchable generation
  - The impact of energy storage
  - The amount of curtailment and or unserved energy
  - S1\_L3R1 January: Selected to show unserved energy
  - S1\_L1R3 April: Selected to show curtailment
- Note: The titles on the following slides describe the change in remaining load for dispatchable resources going from the previous blue line to a new green line with latest profile

# S1\_L3R1 JANUARY 2040 PROFILE

#### High Electrification Loads, Lower Renewables, Winter Peak



# Scenario 1 L3R1 – January 2040

#### **Gross Load**



**ISO-NE PUBLIC** 

Gross Load to After Energy Efficiency (EE)



After EE to After Space Conditioning Electrification



After Space Conditioning Electrification to After EVs



**ISO-NE PUBLIC** 

#### After EVs to After All Imports



**ISO-NE PUBLIC** 

#### After All Imports to After PV



**ISO-NE PUBLIC** 

#### After PV to After OSW



#### After OSW to After LBW



**ISO-NE PUBLIC** 

#### After LBW to After Hydro



#### After Hydro to After Energy Storage



**ISO-NE PUBLIC** 

After Energy Storage to Showing Curtailments



**ISO-NE PUBLIC** 

Showing Curtailments to Showing Unserved Energy



Total Load, Dispatchable Resources, Curtailments, and Must-Run



# S1\_L1R3 APRIL 2040 PROFILE

#### Lower Electrification Loads, High Renewables, Shoulder Season


# Scenario 1 L1R3 – April 2040

#### **Gross Load**



**ISO-NE PUBLIC** 

#### Gross Load to After EE



**ISO-NE PUBLIC** 

After EE to After Space Conditioning Electrification



**ISO-NE PUBLIC** 

After Space Conditioning Electrification to After EVs



**ISO-NE PUBLIC** 

#### After EVs to After All Imports



**ISO-NE PUBLIC** 

After All Imports to After Solar Photovoltaics (PV)



**ISO-NE PUBLIC** 

#### After PV to After OSW



**ISO-NE PUBLIC** 

#### After OSW to After LBW



**ISO-NE PUBLIC** 

#### After LBW to After Hydro



**ISO-NE PUBLIC** 

#### After Hydro to After Energy Storage



**ISO-NE PUBLIC** 

After Energy Storage to Showing Curtailments



**ISO-NE PUBLIC** 

#### Showing Curtailments to Showing Unserved Energy



**ISO-NE PUBLIC** 

Total Load, Dispatchable Resources, Curtailments, and Must-Run



**ISO-NE PUBLIC** 

### **PRELIMINARY RESULTS**

### Production Cost Simulations – Scenario 1 Matrix Cases



# **Summary of Preliminary Results**

- In Scenario 1 with Load 1 or Load 2 and Resource 3 had significant oversupply
  - Oversupply is curtailed by threshold prices which results in annual average negative LMPs
  - There was minimal difference between the results of Load 1 and Load 2
- Meanwhile, Scenario 1 with Load 3 had unserved energy resulting in capacity shortfall penalty prices
  - There was insufficient storage in these scenarios to store energy during times of oversupply for use later
  - S1\_L3R3 had the closest balance of resources of the L3 cases, but still had both unserved energy and periods of curtailment

### Total System-Wide Energy Production by Fuel Type (TWh) Comparison of Scenario 1 Matrix Cases



- Relatively small increases in load from L1 to L2 lead to similar results between scenarios
  - L3 saw a much more significant increase in load leading to much higher natural gas production primarily
- Increasing OSW and PV from R1 to R2 and then R2 to R3 led to decreased natural gas production between cases

**ISO-NE PUBLIC** 

### Locational Marginal Price Duration Curve (\$/MWh)

#### Comparison of Scenario 1 Matrix Cases



- L3 scenarios saw significant amounts of unserved energy
  - S1\_L3R3 had both curtailment and unserved energy throughout the year
- L1R3 and L2R3 experienced negative LMPs due to oversupply and threshold pricing 66% and 63% of the year, respectively

ISO-NE PUBLIC

### Annual Average Locational Marginal Price ISO-NE (\$/MWh) Comparison of Scenario 1 Matrix Cases



- Due to a large oversupply seen in S1\_L1R3 and S1\_L2R3, average LMP was negative
- For the L3 cases, the PFP penalty price of \$5455/MWh significantly raised the annual average LMPs

ISO-NE PUBLIC

# **Unserved Energy for L3 Scenarios**



- There were insufficient resources to meet load for all of the scenarios with the L3 assumption
  - Even with the highest assumed resource mix for Scenario 1 (S1\_L3R3), there was an unbalance between load and resources due insufficient energy storage to shift the production to times of consumption

55

ISO-NE PUBLIC

• L1 and L2 assumptions did not have any unserved energy

### **Production Costs (\$ Million)**

#### **Comparison of Scenario 1 Matrix Cases**



- Dispatching generators for many more hours drove production costs higher in the L3 cases
  - Note: The PFP penalty price for unserved energy does not factor into the production cost

**ISO-NE PUBLIC** 

### LSEEE and Uplift

#### Comparison of Scenario 1 Matrix Cases



- Significant oversupply in S1\_L1R3 and S1\_L2R3 drove LSEEE negative due to threshold prices
- L1 and L2 results were very similar despite some differences in electrification load assumptions

**ISO-NE PUBLIC** 

57

• LSEEE was drastically increased with R3 due to hours of the PFP penalty rate being enforced

### Curtailment by Resource (TWh) Comparison of Scenario 1 Matrix Cases



- The combination of a significant imbalance of load and resources in the S1\_L1R3 and S1\_L2R3 cases and the insufficient energy storage led to immense curtailments
  - Relative amounts of curtailments shown are based on the assumed threshold price order and may not reflect bidding behavior or the preference for one type of resource over another

ISO-NE PUBLIC

- In L3 cases with unserved energy:
  - S1\_L3R1 and S1\_R3L2 have no curtailed energy since all resources are used to serve load
  - S1\_L3R3 has both curtailment and unserved energy in the first three months of the year

# **Available Energy and Curtailment**

#### **Comparison of R3 Scenarios**



 A large portion of onshore wind, offshore wind, and some PV were curtailed in S1\_L1R3 and S1\_L2R3

**ISO-NE PUBLIC** 

 Even with unserved energy, a portion of onshore and offshore wind were curtailed in S1\_L3R3

### CO<sub>2</sub> Emissions (Millions of Tons) Comparison of Scenario 1 Matrix Cases



- Natural gas emissions were minimal in cases with large oversupply and maximum in cases with unserved energy
- Wood, MSW, and LFG units followed a similar trend to natural gas
  - These must run units were allowed to be dispatched between their eco-min and eco-max ratings

60

**ISO-NE PUBLI** 

### **High-Level Transmission Analysis** Scenario 1 L1R1



- Running constrained case, three interfaces had significant congestion:
  - ME-NH (52%, 2.19 TWh, 4,592 Hrs), North-South (29%, 1.31 TWh, 2,552 Hrs), Surowiec-South (28%, 0.82 TWh, 2,463 Hrs)
- Based on historical proposals and realistic increases in transfer limits, a 500 MW increase was applied to those . three transfer limits to represent a new 345 kV line from the ME subarea down to the Boston subarea
- This limit increase significantly reduced the constrained energy and hours as compared to the unconstrained case: .

**ISO-NE PUBLI** 

- Energy: Surowiec-South (-90%, -0.74 TWh), ME-NH (-74%, -1.62 TWh), North-South (-65%, -0.86 TWh) Hours: Surowiec-South (-76%, -1,871 Hrs), ME-NH (-57%, -2,611 Hrs), North-South (-59%, -1,510 Hrs)

### **PRELIMINARY ALTERNATIVE RESULTS**

### Production Cost Simulations – Scenario 1 Alternatives A & C



# **Summary of Preliminary Alternative Results**

- In Alternative A, using an unconstrained tie line to Québec for energy banking\* led to the elimination of all curtailment in New England
  - By reimporting energy during times of high natural gas production, total natural gas production is significantly decreased
  - A maximum flow of 12,448 MW was seen on the new tie line
- In Alternative C, the retirement of nuclear units led to a slightly higher utilization of renewables and a significant increase in natural gas production

\* Energy Banking utilizes existing and new ties to lower renewable build-out spillage by utilizing "energy banking". Energy banking was discussed in detail at the <u>February 17, 2021</u> PAC meeting (slides 10-14). The intent was to us bi-directional external tielines with negative threshold prices to simulate incentives of Renewable Energy Credits (RECs). The study explored the addition of two new tielines & seasonal storage with Hydro Quebec.

### Total System-Wide Energy Production by Fuel Type (TWh) Comparison of S1\_L1R1, S1\_L1R1\_A, and S1\_L1R1\_C



Due to minimal need of the new tie line for export of curtailed renewable energy, there
was only a slight difference in unit commitment is seen between S1\_L1R1 and
S1\_L1R1\_A

**ISO-NE PUBLIC** 

64

• In S1\_L1R1\_C, nuclear generation was primarily replaced by natural gas resources

### Locational Marginal Price Duration Curve (\$/MWh) Comparison of S1\_L1R1, S1\_L1R1\_A, and S1\_L1R1\_C



65

- Unconstrained energy banking led to elimination of curtailments
- The average LMP for S1\_L1R1 was \$19.05, S1\_L1R1\_A was \$19.32, and S1\_L1R1\_C was \$29.94

ISO-NE PUBLIC

### Natural Gas Generation Duration Curve (MW) Comparison of S1\_L1R1, S1\_L1R1\_A, and S1\_L1R1\_C



Natural gas production was reduced by 1.9 TWh (8%) during peak hours due to the

٠

- return of banked energy
- The retirement of nuclear units led to an increase of 17.9 TWh (73%) usage of NG

**ISO-NE PUBLI** 

### Curtailment by Resource (TWh) Comparison of S1\_L1R1, S1\_L1R1\_A, and S1\_L1R1\_C



- No resources were curtailed in Alternative A
- There was an 82% reduction in curtailment with the retirement of nuclear units in Alternative C
- Relative amounts of curtailments shown were based on the assumed 'import priority' threshold price order and may not reflect bidding behavior or the preference for one type of resource over another

### Available Energy and Curtailment Comparison of S1\_L1R1, S1\_L1R1\_A, and S1\_L1R1\_C



- S1\_L1R1 had minimal curtailment, but curtailment was eliminated with energy banking in Alternative A
- The retirement of nuclear units (S1\_L1R1\_C) led to slightly higher utilization of renewables

**ISO-NE PUBLIC** 

# Flow Duration Curve Across Unconstrained Tie from ISO-NE to HQ *S1\_L1R1\_A*



- Minimal curtailment in S1\_L1R1 led to low utilization of the new tie line in Alternative A
- The new tie line imported/exported 1.88 TWh of energy
  - Since existing imports were not curtailed, all banked energy was from exported energy from New England

69

The new tie line was not curtailed while importing banked energy

### **Production Costs (\$ Million)** Comparison of S1\_L1R1, S1\_L1R1\_A, and S1\_L1R1\_C



 In Alternative A, the return of banked energy primarily replaced natural gas and led to a reduced production cost

**ISO-NE PUBLI** 

70

• In Alternative C, the retirement of nuclear units and increased production from primarily natural gas led to increased production cost

### LSEEE and Uplift

### Comparison of S1\_L1R1, S1\_L1R1\_A, and S1\_L1R1\_C



- Since no resources were curtailed in S1\_L1R1\_A, negative prices didn't fall as low as S1\_L1R1 which led to a higher LSEEE
- Increased natural gas production with the retirement of nuclear units led to increased LSEEE

SO-NE PUBLI

### **NEXT STEPS**


# **Next Steps**

- The remaining preliminary production cost results for other scenarios will be presented in August 2021
  - Scenario 1 Alternatives D & E
  - Scenarios 2 and 3 with Alternatives and matrix sensitivities
- Preliminary ancillary services analysis results for Scenario 1 are expected in September 2021
- Preliminary probabilistic (MARS) analyses to be presented starting in October 2021
- Stakeholders will have an opportunity to discuss assumption modifications in November/December 2021

73

• Results for probabilistic analyses and final round of production cost and ancillary services are expected in Q3/Q4 2021

# Questions

**ISO-NE PUBLIC** 





#### **APPENDIX I**

Results in Table Form



# **BESS Characteristics**

| Assumption    | Matrix<br>Scenario<br>1    | Matrix<br>Scenario<br>2    | Matrix<br>Scenario<br>3 | A<br>Bi-Directional<br>Transmission | B<br>Vehicle to<br>Grid | C<br>Nuclear<br>Retirement | D<br>100% Clean<br>Electricity | E<br>On/Offshore<br>Grids |
|---------------|----------------------------|----------------------------|-------------------------|-------------------------------------|-------------------------|----------------------------|--------------------------------|---------------------------|
| Capacity (MW) | Existing<br>600 +<br>1,400 | Existing<br>600 +<br>3,340 | Existing<br>600*        | Same as<br>Parent                   | Add<br>100,000          | Same as<br>Parent          | 77,700                         | 77,700                    |
| Energy (MWh)  | 7,500                      | 12,525                     | 2,250                   | Same as<br>Parent                   | Add<br>200,000          | Same as<br>Parent          | 2,393,000                      | 2,393,000                 |

Note: "Parent" refers to the scenario to which the alternative is applied. For example when, Alternative Scenario C ("Nuclear Retirement") is applied to Matrix Scenario 1, Matrix Scenario 2 and Matrix Scenario 3 the amount of batteries will be determined by the assumptions for batteries in Matrix Scenario 1, Matrix Scenario 2 and Matrix Scenario 3, respectively.

76

\* Significant energy storage capability assumed via flexible EV charging.

Reference: Modeling of Battery Storage in Economic Studies, December 16, 2020 https://www.iso-ne.com/static-assets/documents/2020/12/a9 modeling of battery storage in economic studies.pdf

# Range in Economic Output of Units by Fuel Type

Scenario 1

| Fuel Type | Collective<br>Eco. Min. | Collective<br>Eco. Max. | Difference Between<br>Minimum and Maximum |
|-----------|-------------------------|-------------------------|-------------------------------------------|
| ADR1      | 0                       | 100                     | 100                                       |
| ADR2      | 0                       | 586                     | 586                                       |
| DFO       | 254                     | 1,118                   | 864                                       |
| JF        | 5                       | 22                      | 17                                        |
| KER       | 445                     | 1233                    | 788                                       |
| LFG       | 54                      | 95                      | 41                                        |
| MSW       | 164                     | 452                     | 288                                       |
| NG        | 5,018                   | 17,251                  | 12,233                                    |
| NUC       | 2,502                   | 2,502                   | 0                                         |
| RFO       | 200                     | 573                     | 373                                       |
| WDS       | 302                     | 539                     | 237                                       |

**ISO-NE PUBLIC** 

#### Annual Average Locational Marginal Price ISO-NE (\$/MWh) Comparison of Scenario 1 Matrix Cases

| Scenario  | ISO-NE Annual Average LMP |
|-----------|---------------------------|
| S1_L1R1   | 19.05                     |
| S1_L1R2   | 15.60                     |
| S1_L1R3   | -18.20                    |
| S1_L2R1   | 21.64                     |
| S1_L2R2   | 17.95                     |
| S1_L2R3   | -16.14                    |
| S1_L3R1   | 283.38                    |
| S1_L3R2   | 232.46                    |
| S1_L3R3   | 92.54                     |
| S1_L1R1_A | 22.18                     |
| S1_L1R1_C | 29.94                     |

# **Production Costs by Fuel Type (\$ Million)**

| Resource | S1_L1R1 | S1_L1R2 | S1_L1R3 | S1_L2R1 | S1_L2R2 | S1_L2R3 | S1_L3R1          | S1_L3R2          | S1_L3R3 | S1_L1R1_A | S1_L1R1_C |
|----------|---------|---------|---------|---------|---------|---------|------------------|------------------|---------|-----------|-----------|
| Coal     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0              | 0.0              | 0.0     | 0.0       | 0.0       |
| NG       | 1,142.4 | 978.1   | 411.4   | 1,241.8 | 1,066.1 | 429.6   | 3 <i>,</i> 888.7 | 3 <i>,</i> 667.3 | 2,002.2 | 1,056.3   | 1,952.1   |
| Oil      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 275.7            | 242.3            | 81.1    | 0.0       | 0.0       |
| Wood     | 0.6     | 0.6     | 0.4     | 0.6     | 0.6     | 0.4     | 0.6              | 0.6              | 0.6     | 0.6       | 0.6       |
| EE/DR    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0              | 0.0              | 0.0     | 0.0       | 0.0       |
| Nuc      | 160.8   | 160.8   | 160.8   | 160.8   | 160.8   | 160.8   | 160.8            | 160.8            | 160.8   | 160.8     | 0.0       |
| PV       | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0              | 0.0              | 0.0     | 0.0       | 0.0       |
| Renew    | 61.4    | 58.4    | 43.5    | 63.1    | 59.8    | 44.4    | 85.8             | 84.4             | 65.7    | 61.3      | 72.1      |
| Wind     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0              | 0.0              | 0.0     | 0.0       | 0.0       |
| Hydro    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0              | 0.0              | 0.0     | 0.0       | 0.0       |
| Tie      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0              | 0.0              | 0.0     | 0.0       | 0.0       |
| Total    | 1,365.1 | 1,197.9 | 616.0   | 1,466.3 | 1,287.3 | 635.3   | 4,411.6          | 4,155.4          | 2,310.4 | 1,279.0   | 2,024.8   |

#### Load Serving Entity Energy Expenses (LSEEE) and Uplift (\$ Million)

| Scenario | S1_L1R1 | S1_L1R2 | S1_L1R3 | S1_L2R1 | S1_L2R2 | S1_L2R3 | S1_L3R1 | S1_L3R2 | S1_L3R3 | S1_L1R1_A | S1_L1R1_C |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|
| LSEEE    | 3,287   | 2,692   | -3,142  | 3,734   | 3,097   | -2,785  | 48,903  | 40,116  | 15,969  | 3,828     | 5,166     |
| Uplift   | 506     | 504     | 934     | 497     | 497     | 895     | 368     | 370     | 479     | 412       | 470       |
| Total    | 3,793   | 3,196   | -2,208  | 4,231   | 3,594   | -1,890  | 49,271  | 40,486  | 16,448  | 4,240     | 5,636     |

**ISO-NE PUBLIC** 

#### Total System-Wide Energy Production by Fuel Type (TWh)

| Resource             | S1 L1R1 | S1 L1R2 | S1 L1R3 | S1 L2R1 | S1 L2R2 | S1 L2R3 | S1 L3R1 | S1 L3R2 | S1 L3R3 | S1 L1R1 A | S1 L1R1 C |
|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|
| NG                   | 24.2    | 20.7    | 8.5     | 26.4    | 22.6    | 8.9     | 82.6    | 77.8    | 42.1    | 22.3      | 41.9      |
| Oil                  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 1.1     | 1.0     | 0.4     | 0.0       | 0.0       |
| Wood                 | 4.3     | 4.2     | 3.3     | 4.4     | 4.3     | 3.3     | 4.7     | 4.7     | 4.2     | 4.3       | 4.6       |
| EE/DR                | 37.7    | 37.7    | 37.7    | 37.7    | 37.7    | 37.7    | 37.7    | 37.7    | 37.7    | 37.7      | 37.7      |
| Nuc                  | 21.9    | 21.9    | 21.9    | 21.9    | 21.9    | 21.9    | 21.9    | 21.9    | 21.9    | 21.9      | 0.0       |
| PV                   | 21.1    | 27.0    | 32.5    | 21.1    | 27.1    | 33.9    | 21.1    | 27.1    | 37.5    | 21.1      | 21.1      |
| LFG/MSW              | 3.2     | 3.1     | 2.3     | 3.3     | 3.2     | 2.3     | 4.2     | 4.1     | 3.3     | 3.2       | 3.7       |
| <b>Onshore Wind</b>  | 7.8     | 7.5     | 2.9     | 8.0     | 7.7     | 3.1     | 8.6     | 8.6     | 7.2     | 8.6       | 8.4       |
| <b>Offshore Wind</b> | 31.9    | 31.0    | 48.5    | 32.2    | 31.5    | 49.4    | 32.7    | 32.4    | 65.9    | 32.7      | 32.5      |
| Hydro                | 6.5     | 6.3     | 3.5     | 6.7     | 6.5     | 3.6     | 7.1     | 7.0     | 6.2     | 6.8       | 7.0       |
| Imports              | 28.2    | 28.2    | 28.2    | 28.2    | 28.2    | 28.2    | 28.2    | 28.2    | 28.2    | 30.1      | 28.2      |
| Total                | 186.9   | 187.7   | 189.3   | 190.0   | 190.7   | 192.5   | 250.0   | 250.7   | 254.7   | 186.9     | 185.3     |

#### **Annual Curtailed Energy (TWh)**

| Scenario  | Offshore<br>Wind | Onshore<br>Wind | PV  | NECEC | HQ<br>Imports | NB<br>Imports | Total |
|-----------|------------------|-----------------|-----|-------|---------------|---------------|-------|
| S1_L1R1   | 0.8              | 0.7             | 0.0 | 0.0   | 0.0           | 0.0           | 0.7   |
| S1_L1R2   | 1.4              | 1.1             | 0.1 | 0.0   | 0.0           | 0.0           | 2.6   |
| S1_L1R3   | 21.5             | 5.7             | 5.0 | 0.0   | 0.0           | 0.0           | 32.2  |
| S1_L2R1   | 0.5              | 0.5             | 0.0 | 0.0   | 0.0           | 0.0           | 1.0   |
| S1_L2R2   | 0.9              | 0.8             | 0.0 | 0.0   | 0.0           | 0.0           | 1.7   |
| S1_L2R3   | 20.5             | 5.5             | 3.7 | 0.0   | 0.0           | 0.0           | 29.7  |
| S1_L3R1   | 0.0              | 0.0             | 0.0 | 0.0   | 0.0           | 0.0           | 0.0   |
| S1_L3R2   | 0.0              | 0.0             | 0.0 | 0.0   | 0.0           | 0.0           | 0.0   |
| S1_L3R3   | 4.0              | 1.4             | 0.1 | 0.0   | 0.0           | 0.0           | 5.5   |
| S1_L1R1_A | 0.0              | 0.0             | 0.0 | 0.0   | 0.7           | 0.0           | 0.7   |
| S1_L1R1_C | 0.1              | 0.2             | 0.0 | 0.0   | 0.0           | 0.0           | 0.3   |

# Monthly Curtailment S1\_L1R1 (TWh)

| Month    | PV    | NECEC | Offshore<br>Wind | Onshore<br>Wind | HQ<br>Imports | NB Imports | Total |
|----------|-------|-------|------------------|-----------------|---------------|------------|-------|
| 1 – Jan  | 0.000 | 0.000 | 0.000            | 0.000           | 0.000         | 0.000      | 0.000 |
| 2 – Feb  | 0.000 | 0.000 | 0.000            | 0.001           | 0.000         | 0.000      | 0.001 |
| 3 – Mar  | 0.000 | 0.000 | 0.067            | 0.110           | 0.000         | 0.000      | 0.177 |
| 4 – Apr  | 0.023 | 0.000 | 0.284            | 0.242           | 0.000         | 0.000      | 0.549 |
| 5 – May  | 0.033 | 0.000 | 0.245            | 0.129           | 0.000         | 0.000      | 0.407 |
| 6 – Jun  | 0.014 | 0.000 | 0.133            | 0.048           | 0.000         | 0.000      | 0.196 |
| 7 – Jul  | 0.000 | 0.000 | 0.001            | 0.002           | 0.000         | 0.000      | 0.003 |
| 8 – Aug  | 0.000 | 0.000 | 0.001            | 0.008           | 0.000         | 0.000      | 0.009 |
| 9 – Sep  | 0.030 | 0.000 | 0.225            | 0.125           | 0.000         | 0.000      | 0.380 |
| 10 – Oct | 0.000 | 0.000 | 0.137            | 0.142           | 0.000         | 0.000      | 0.279 |
| 11 – Nov | 0.000 | 0.000 | 0.051            | 0.114           | 0.000         | 0.000      | 0.165 |
| 12 – Dec | 0.000 | 0.000 | 0.000            | 0.000           | 0.000         | 0.000      | 0.000 |

# Native New England Resource CO<sub>2</sub> Emissions by Fuel Type (Millions of Short Tons)

| Scenario  | NG   | MSW/LFG | Wood | Other Emitting<br>Resources | Total |
|-----------|------|---------|------|-----------------------------|-------|
| S1_L1R1   | 11.1 | 4.5     | 7.0  | 0.0                         | 11.5  |
| S1_L1R2   | 9.5  | 4.3     | 6.9  | 0.0                         | 20.7  |
| S1_L1R3   | 4.0  | 3.1     | 5.2  | 0.0                         | 12.3  |
| S1_L2R1   | 12.1 | 4.7     | 7.1  | 0.0                         | 23.9  |
| S1_L2R2   | 10.4 | 4.4     | 7.0  | 0.0                         | 21.8  |
| S1_L2R3   | 4.2  | 3.2     | 5.3  | 0.0                         | 12.7  |
| S1_L3R1   | 37.0 | 6.2     | 7.6  | 0.0                         | 50.8  |
| S1_L3R2   | 34.9 | 6.1     | 7.6  | 0.0                         | 48.6  |
| S1_L3R3   | 18.9 | 4.8     | 6.8  | 0.0                         | 30.5  |
| S1_L1R1_A | 10.0 | 4.5     | 7.0  | 0.0                         | 21.5  |
| S1_L1R1_C | 18.9 | 5.4     | 7.5  | 0.0                         | 31.8  |

## **R3 PV by RSP Zone**

| RSP Zone | R3 PV Allocation<br>(MW) |
|----------|--------------------------|
| BHE      | 165                      |
| BOS      | 668                      |
| CMA/NEMA | 1,091                    |
| СТ       | 5,487                    |
| ME       | 626                      |
| NH       | 6,132                    |
| NOR      | 232                      |
| RI       | 852                      |
| SEMA     | 2,756                    |
| SME      | 427                      |
| SWCT     | 1,738                    |
| VT       | 2,246                    |
| WMA      | 5,719                    |
| Total    | 28,139                   |



### **APPENDIX II**

#### Acronyms



# Acronyms

-

| ACDR   | Active Demand Capacity Resource                 | EE    | Energy Efficiency                        |
|--------|-------------------------------------------------|-------|------------------------------------------|
| ACP    | Alternative Compliance Payments                 | EFORd | Equivalent Forced Outage Rate demand     |
| AGC    | Automatic Generator Control                     | EIA   | U.S. Energy Information Administration   |
| BESS   | Battery Energy Storage Systems                  | EPECS | Electric Power Enterprise Control System |
| BTM PV | Behind the Meter Photovoltaic                   | EV    | Electric Vehicle                         |
| BOEM   | Bureau of Ocean Energy Management               | FCA   | Forward Capacity Auction                 |
| ССР    | Capacity Commitment Period                      | FCM   | Forward Capacity Market                  |
| CELT   | Capacity, Energy, Load, and Transmission Report | FGRS  | Future Grid Reliability Study            |
| CSO    | Capacity Supply Obligation                      | FOM   | Fixed Operation and Maintenance Costs    |
| Cstr.  | Constrained                                     | HDR   | Hydro Daily, Run of River                |
| DER    | Distributed Energy Resource                     | HDP   | Hydro Daily, Pondage                     |
| DR     | Demand-Response                                 | HQ    | Hydro-Québec                             |

**ISO-NE PUBLIC** 

# Acronyms, cont.

| HY     | Hydro Weekly Cycle                          | OSW     | Offshore Wind                                 |
|--------|---------------------------------------------|---------|-----------------------------------------------|
| LBW    | Land Based Wind                             | 0&M     | Operation and Maintenance                     |
| LFG    | Landfill Gas                                | PHII    | Phase II line between Radisson and Sandy Pond |
| LFR    | Load Following Reserve                      | PV      | Photovoltaic                                  |
| LMP    | Locational Marginal Price                   | RECs    | Renewable Energy Credits                      |
| LSEEE  | Load-Serving Entity Energy Expenses         | RFP     | Request for Proposals                         |
| MSW    | Municipal Solid Waste                       | RGGI    | Regional Greenhouse Gas Initiative            |
| NECEC  | New England Clean Energy Connect            | RPS     | Renewables Portfolio Standards                |
| NESCOE | New England States Committee on Electricity | SCC     | Seasonal Claimed Capability                   |
| NG     | Natural Gas                                 | Uncstr. | Unconstrained                                 |
| NICR   | Net Installed Capacity Requirement          | VER     | Variable Energy Resource                      |
| NREL   | National Renewable Energy Laboratory        |         |                                               |

**ISO-NE PUBLIC**