APRIL 28, 2022

2022 Final Transportation Electrification Forecast

ISO-NE PUBLIC

Outline

- Introduction & Forecast Methodology
- Electric Vehicle Adoption
- Estimating Impacts of Fleet Vehicles

ISO-NE PUBL

- Energy Forecast
- Demand Forecast

Acronyms

- **BEV** Battery Electric Vehicle
- **BTM PV** Behind-the-meter Photovoltaic
- **CELT** Capacity, Energy, Loads and Transmission
- **EIA** Energy Information Agency
- **EV** Electric Vehicle
- FCM Forward Capacity Market
- **GHG** Greenhouse Gas
- **HE** Hour Ending

- ICR Installed Capacity Requirement
- LDV Light-Duty Vehicle
- LFC- Load Forecast Committee
- **P75** 75th Percentile
- **PHEV** Plug-in Hybrid Electric Vehicle
- **RSP** Regional System Plan
- **TCI** Transportation Climate Initiative
- VMT Vehicle Miles Traveled

Introduction

- Transportation electrification is expected to play a pivotal role in the achievement of New England state greenhouse gas (GHG) reduction mandates and goals
- Forecasted impacts of transportation electrification on state and regional electric energy and demand are included as part of the 2022 Capacity, Energy, Loads, and Transmission (CELT) forecast
- ISO discussed methodology, assumptions, and related energy and demand impacts associated with the transportation electrification forecast at the NEPOOL Load Forecast Committee (LFC), including the following presentations:
 - Background, assumptions and methodology at the <u>September 24, 2021</u> and <u>November</u> <u>12, 2021</u> LFC meetings
 - The draft 2022 forecast at the <u>December 10, 2021</u> LFC meeting
 - The final draft 2022 forecast at the <u>February 18, 2022</u> LFC meeting

Summary of Methodology

- Transportation electrification forecast framework
 - Forecast the adoption of electrified vehicles or "EVs", for each state and the region over the next ten years
 - Útilize data-driven assumptions to convert the EV adoption forecast into estimated impacts on monthly energy and demand by state
- Starting with the CELT 2022 forecast, the ISO has expanded the scope of EVs considered to include select categories of fleet vehicles:
 - Light-duty fleet vehicles, medium-duty delivery trucks, school buses, and transit buses
- Light-duty EV adoption forecast figures used in the CELT 2021 forecast, and updated figures provided by the states for CELT 2022, implicitly reflect both personal and fleet light-duty EVs
 - To avoid double-counting, forecasts for light-duty EVs are discounted by the percentages below to remove fleet vehicles
 - These discount factors are based on state level vehicle stock data as of Q1 2021

	СТ	MA	ME	NH	RI	VT
% Fleet	4.6%	6.0%	5.5%	7.2%	5.7%	5.3%

ISO-NE PUBLIC

ELECTRIC VEHICLE ADOPTION FORECAST

Personal Light-Duty Vehicles and Select Classes of Fleet Vehicles

2022 Light-Duty Personal EV Adoption Forecast

States - Incremental Increases in Vehicle Stock

- Draft 2022 adoption figures shown reflect the removal of light-duty fleet EVs
- ME adoption forecast was developed to align with the state's <u>Climate Action Plan</u>
- VT adoption forecast reflects values submitted by state representatives
- CT adoption forecast values represent a blend of the CELT 2021 forecast and EV targets listed in the state's <u>Electric Vehicle Roadmap</u>
- RI adoption forecast was developed based on discussions with state and utility representatives
- MA and NH adoption forecasts result from carrying forward the CELT 2021 forecast

	Light-Duty Personal EVs						
Year	СТ	MA	ME	NH	RI	VT	NE
2022	17,001	6,201	3,262	3,269	2,332	3,370	35,435
2023	18,843	14,376	4,866	3,461	3,308	4,982	49,837
2024	20,961	38,430	8,259	3,685	4,331	8,776	84,442
2025	22,987	52,242	13,325	3,875	5,549	15,775	113,754
2026	29,365	59,101	18,299	5,165	7,559	21,465	140,954
2027	37,125	64,410	24,611	6,173	9,662	25,886	167,868
2028	44,636	69,735	32,571	7,115	11,895	27,189	193,140
2029	51,281	73,452	41,336	7,796	14,546	32,541	220,953
2030	62,014	75,403	51,368	8,964	17,246	33,285	248,280
2031	65,706	77,405	60,376	9,020	20,223	34,404	267,134
Total	369,920	530,755	258,273	58,524	96,652	207,673	1,521,796

Impact of Forecast on Light-Duty Personal Vehicle Stock									
	CT MA ME NH RI VT NE								
2021 Electrified Stock	15,533	36,533	4,822	5,014	3,046	4,332	69,280		
Total Electrified (2022-2031)	369,920	530,755	258,273	58,524	96,652	207,673	1,521,796		
Total Vehicle Stock	2,856,427	5,082,420	1,247,151	1,222,363	782,764	518,562	11,709,687		
6 of Stock Electrified by 2031 13% 11% 21% 5% 13% 41% 1									

ISO-NE PUBLIC

New England Light-Duty Personal EV Adoption Forecast

ISO-NE PUBLIC

Comparison Between CELT 2021 and CELT 2022

Year	CELT 2021*	CELT 2022
2021	21,708	
2022	27,249	35,435
2023	38,594	49,837
2024	67,948	84,442
2025	88,797	113,754
2026	107,095	140,954
2027	124,891	167,868
2028	144,168	193,140
2029	161,861	220,953
2030	181,580	248,280
2031		267,134
10-year Total	963,891	1,521,796

8

* CELT 2021 values shown reflect adjustment to remove light-duty fleet vehicles

- For the 2022 forecast the ISO has expanded the scope of vehicles considered to include 4 classes of fleet vehicles in each of the New England states
 - Light-duty fleet, medium-duty delivery, school buses, and transit buses
- Fleet EV adoption forecast development (for each fleet category, by state)
 - Develop a "sales forecast" of new fleet vehicles to be purchased each year
 - Combines vehicle replacement and fleet growth where possible
 - Assumes no early retirement of vehicles
 - Develop a consensus "EV sales share" forecast
 - Based on various policies, goals, reports, presentations, and/or announcements
 - Apply the "EV sales share" forecast to the "sales forecast" to get the number of additional fleet EVs on the road each year

Current Fleet Vehicle Stock in New England

As of March 31, 2021

	Light-du Veh	ıty Fleet icles	Medium-duty Delivery Vehicles		School Buses		Transit	Buses
	All	Electric	All	Electric	All	Electric	All	Electric
СТ	142,921	623	4,581	0	5,265	2	771	2
MA	337,296	1,915	9,476	8	9,668	7	1,763	25
ME	66,180	210	1,869	0	3,777	1	194	0
NH	98,716	379	2,047	0	3,571	0	143	0
RI	48,552	199	1,389	0	2,404	0	252	3
VT	30,020	219	833	0	1,780	6	118	2
Total	723,685	3,545	20,195	8	26,465	16	3,241	32

ISO-NE PUBLIC

Source: DNV Energy Insights USA Inc.

New England - Incremental Increases in Vehicle Stock

	Fleet EV Adoption Forecast						
Year	LD Fleet	MD Delivery	School Buses	Transit Buses	Fleet Total		
2022	713	48	51	15	827		
2023	1,071	69	84	22	1,246		
2024	1,897	94	130	28	2,149		
2025	2,549	133	186	34	2,902		
2026	3,784	174	259	41	4,258		
2027	5,162	231	374	54	5,821		
2028	6,411	301	515	71	7,298		
2029	7,885	368	674	85	9,012		
2030	9,520	439	864	102	10,925		
2031	11,214	499	1,012	115	12,840		
Total	50,206	2,356	4,149	567	57,278		

Light-Duty Fleet - Incremental Increases in Vehicle Stock

ISO-NE PUBLIC

	Light-Duty Fleet EVs						
Year	СТ	MA	ME	NH	RI	VT	NE
2022	153	370	57	48	57	28	713
2023	235	569	88	48	87	44	1,071
2024	416	999	169	85	148	80	1,897
2025	555	1,327	232	131	195	109	2,549
2026	810	1,934	341	254	285	160	3,784
2027	1,104	2,636	467	349	389	217	5,162
2028	1,353	3,228	572	513	477	268	6,411
2029	1,648	3,922	709	702	575	329	7,885
2030	1,987	4,718	867	860	688	400	9,520
2031	2,327	5,519	1,023	1,070	804	471	11,214
Total	10,588	25,222	4,525	4,060	3,705	2,106	50,206

12 =

Medium-Duty Delivery - Incremental Increases in Vehicle Stock

ISO-NE PUBLIC

	Medium-Duty Delivery EVs							
Year	СТ	MA	ME	NH	RI	VT	NE	
2022	12	25	1	4	4	2	48	
2023	17	36	4	4	5	3	69	
2024	23	48	7	5	7	4	94	
2025	31	63	16	8	9	6	133	
2026	38	79	28	11	11	7	174	
2027	50	104	39	14	15	9	231	
2028	65	134	52	18	20	12	301	
2029	79	164	64	23	24	14	368	
2030	94	194	77	29	28	17	439	
2031	105	217	90	36	32	19	499	
Total	514	1,064	378	152	155	93	2,356	

School Buses - Incremental Increases in Vehicle Stock

ISO-NE PUBLIC

	School Bus EVs						
Year	СТ	MA	ME	NH	RI	VT	NE
2022	15	22	3	4	4	3	51
2023	24	35	10	4	6	5	84
2024	36	52	17	7	10	8	130
2025	47	68	38	10	13	10	186
2026	61	89	64	15	17	13	259
2027	89	130	91	19	25	20	374
2028	126	183	118	25	35	28	515
2029	167	242	145	37	46	37	674
2030	216	315	172	53	60	48	864
2031	251	366	199	70	70	56	1012
Total	1,032	1,502	857	244	286	228	4149

Transit Buses - Incremental Increases in Vehicle Stock

ISO-NE PUBLIC

	Transit Bus EVs							
Year	СТ	MA	ME	NH	RI	VT	NE	
2022	3	5	0	0	6	1	15	
2023	4	8	0	0	8	2	22	
2024	6	10	1	0	8	3	28	
2025	7	13	1	1	9	3	34	
2026	9	17	2	1	9	3	41	
2027	13	23	4	1	10	3	54	
2028	17	31	5	2	10	6	71	
2029	21	39	6	2	11	6	85	
2030	25	47	7	3	11	9	102	
2031	29	54	8	3	12	9	115	
Total	134	247	34	13	94	45	567	

ESTIMATING ENERGY AND DEMAND IMPACTS OF ELECTRIFIED FLEET VEHICLES

Methodology

- Energy and demand impacts are based on analysis of fleet vehicle driving patterns and a sample of fleet vehicle charging data
- For each fleet vehicle class the following inputs were developed
 - Annual vehicle miles traveled (VMT)
 - Monthly allocation of VMT
 - Reflects seasonal driving patterns
 - Allocations for monthly VMT to weekdays/weekends
 - Hourly allocation of daily charging, by month
 - Shapes for Weekdays and weekends
 - Relationship between weather (daily average dry-bulb) and EV efficiency (kWh/mile)
- Monthly energy and demand impacts were developed for each fleet vehicle class
 - Develop VMT assumptions for all days within a month
 - Apply temperature sensitive efficiency relationships to get daily energy
 - Apply daily charging shapes to allocate charging to hours
 - Monthly energy impacts stem from the same 30 year normal period used in the load forecast

ISO-NE PUBLIC

- Monthly demand impacts result from applying the weather distribution used in the load forecast and extracting the 95th percentile
- Scale to adoption forecast

Vehicle Miles Traveled (VMT)

Annual VMT

Vehicle Category	Average Annual VMT
School bus	11,483
Transit bus	38,488
Medium-duty delivery	13,655
Light-duty fleet	21,258

Day-type VMT Allocation

Electric Vehicle Efficiency

Energy Consumption as a Function of Daily Temperature

Allocation of Hourly Charging by Month

Non-Holidays & Weekdays

Allocation of Hourly Charging by Month

Holidays & Weekends

ENERGY FORECAST

Estimating Energy Impacts of EV Adoption

- Personal light-duty vehicles
 - Monthly energy is based on results of the ChargePoint data analysis
 - The adjacent bar chart illustrates monthly kWh/day per EV used to estimate monthly energy

- Fleet vehicles
 - Monthly energy is calculated for each class of fleet vehicles based on state weather and VMT
 - Average monthly kWh/day for New England are shown on the following slide

Estimating Energy Impacts of EV Adoption

Fleet EV Average Daily Energy – New England

Monthly Energy

Annual Energy

Comparison Between CELT 2021 and CELT 2022 for New England

DEMAND FORECAST

Estimating Demand Impacts of EV Adoption

- For applications that include hourly analysis, EV demand will be modeled hourly
 - E.g., probabilistic ICR analysis
- Other forecast applications and reporting require a deterministic peak value (e.g., CELT report), and for which:
 - Winter peak demand:
 - Use the monthly average EV demand from HE 18-19
 - January-April, October-December
 - Summer demand impacts should reflect expectations of peak shifting due to increasing BTM PV penetrations (slides 32 and 33)
- Personal Light-Duty Vehicles
 - Hourly weekday EV demand profiles are used to estimate demand impacts
 - These values reflect the 75th percentile ("P75") of the aggregated hourly EV data discussed as part of the <u>November 18, 2019 LFC</u> (slides 10-25)
 - P75 values serve to capture more extreme values than averages (e.g., due to weather effects), but are not the most extreme data points, which could be more of an artifact of a relatively small EV sample size
- Fleet Vehicles
 - Hourly weekday allocation of daily energy is used to estimate demand impacts
 - Daily energy is derived using VMT and temperature responsiveness of electric vehicle efficiency as outlined on slide 17

29

ISO-NE PUBLIC

Personal Light-Duty EV Hourly Demand

Feb

/ehicl

ž

Dec

Data source: ChargePoint, Inc. **ISO-NE PUBLIC**

Fleet EV Hourly Demand

Summer Peak Net Load as BTM PV Increases

- Hourly net load and BTM PV data from the summers (July/August) of 2014-2021 were analyzed to simulate net loads with increasing penetrations of BTM PV
- Scatter plot shows the hour ending (HE) and magnitude (in GW) of net peak load as BTM PV increases
- Gray areas reflect estimated window of hours peak load may occur
 - Yellow areas highlight peak hours

Interaction of EV Summer Demand and BTM PV

ISO-NE PUBLIC

- For forecast applications and reporting that require a deterministic peak value, EV demand during the summer months is estimated as the average monthly EV demand during the summer peak hours tabulated to the right
 - May through September
 - Hours reflect effect of shifting peak demand due to BTM PV
- Used for forecasts of fleet vehicles and personal light-duty personal vehicles

Year	PV Nameplate Bin (GW)*	Summer Peak Hours
2022	5	[17,18,19]
2023	6	[17,18,19]
2024	7	[17,18,19]
2025	7	[17,18,19]
2026	8	[18,19,20]
2027	8	[18,19,20]
2028	9	[18,19,20]
2029	9	[18,19,20]
2030	10	[18,19,20]
2031	10	[18,19,20]

*Based on 2021 PV forecast values

Monthly Demand by State

Summer Peak Demand

Winter Peak Demand

								New England (January)		
Winter Peak (MW)					∿)			1,600	Personal Light-Duty	
Winter Of	СТ	MA	ME	NH	RI	VT	NE	1,400 -	Light-Duty Fleet	
2022/23	17	8	3	3	3	3	38	1.200 -	School Bus	
2023/24	35	24	8	7	6	8	88	$\widehat{\mathbf{A}}$		
2024/25	55	62	17	10	10	17	171	<u>≥</u> 1,000 -		
2025/26	78	112	30	14	16	32	282	- 008 <u>ea</u>		
2026/27	107	170	48	19	24	52	420	- 000 - T		
2027/28	144	234	73	26	34	75	586	Ň		
2028/29	188	305	106	34	46	101	780	400 -		
2029/30	241	382	147	43	61	131	1,004	200 -		
2030/32	303	463	198	53	79	162	1,258			
2031/32	370	548	258	64	100	195	1,535		2022 2023 2024 2025 2026 2021 2028 2029 2030 2031 2032	
		_								

•

New England Comparison Between CELT 2021* and CELT 2022

New England Comparison Between CELT 2021 and CELT 2022*

Summer Peak (July) MW						
Year	CELT 2021*	CELT 2022	Change			
2022	5	14	8			
2023	27	43	15			
2024	64	89	25			
2025	117	156	39			
2026	182	278	96			
2027	259	399	139			
2028	349	540	192			
2029	450	704	254			
2030	655	890	235			
2031		1,096				

Win	ter Peak (January) MW						
Winter Of	CELT 2021*	CELT 2022	Change				
2022/23	29	38	8				
2023/24	67	88	21				
2024/25	133	171	38				
2025/26	217	282	65				
2026/27	318	420	101				
2027/28	437	586	150				
2028/29	573	780	208				
2029/30	726	1,004	279				
2030/32	896	1,258	362				
2031/32		1,535					

ISO-NE PUBLIC

Annual Energy GWh						
Year	CELT 2021*	CELT 2022	Change			
2022	51	78	27			
2023	185	256	71			
2024	406	539	133			
2025	724	950	226			
2026	1,123	1,481	358			
2027	1,594	2,132	538			
2028	2,147	2,908	761			
2029	2,762	3,790	1,029			
2030	3,458	4,807	1,349			
2031		5,934				

38

* CELT 2021 values have been adjusted to begin accumulating 2022

** All values shown are rounded to the nearest MW or GWh

Reporting and Publications

- The final 2022 transportation electrification forecast described herein is included in CELT 2022
 - All gross and net, energy and demand forecasts reported in both 2022 CELT* and in the 2022
 Forecast Data workbook** are inclusive of transportation electrification
 - Breakout of annual energy and seasonal demand are reported in 2022 CELT Section 1.7, and 2022
 Forecast Data worksheet 16
- For probabilistic ICR studies, the transportation forecast is modeled hourly as a load addition
 - Hourly demand based on the demand plots illustrated on slides 30 and 31, scaled up by the monthly forecasted EV adoption in each state
- For the 2022 forecast, the state energy and demand transportation electrification forecasts are allocated to ISO Load Zones and Regional System Plan (RSP) Subareas based on information obtained during the ISO's annual Multiregional Modeling Working Group (MMWG) network model creation process

ISO-NE PUBLIC

 Load shares by substation are submitted by Transmission Owners, as described in Section 2.3 of the <u>Transmission Planning Technical Guide Appendix J: Load Modeling Guide</u>

39

* Available on the ISO-NE CELT Report webpage: <u>https://www.iso-ne.com/system-planning/system-plans-studies/celt/</u> ** Available on the ISO-NE Load Forecast webpage: <u>https://www.iso-ne.com/system-planning/system-forecasting/load-forecast/</u>