FEBRUARY 2ND REPORT | TELECONFERENCE

NEPOOL PARTICIPANTS COMMITTEE | 2/2/23 Meeting Agenda item #4

NEPOOL Participants Committee Report

February 2023

ISO-NE PUBLIC

ISO new england

Vamsi Chadalavada

EXECUTIVE VICE PRESIDENT AND CHIEF OPERATING OFFICER

Table of Contents

•	 Highlights 		Page	3				
•	Page	12						
•	System Operations							
•	Market Operations							
•	 Back-Up Detail 		Page	47				
	 Demand Response 		Page	48				
	 New Generation 		Page	50				
	 Forward Capacity Ma 	arket	Page	57				
	 Reliability Costs - Net 	t Commitment Period	Page	63				
	Compensation (NCPC	C) Operating Costs						
	 Regional System Plar 	n (RSP)	Page	91				
	 Operable Capacity A 	nalysis - Winter 2023 Analysis	Page	120				
	 Preliminary Spring 20 	023 Analysis	Page	127				
	 Operable Capacity Ar 	nalysis – Appendix	Page	134				

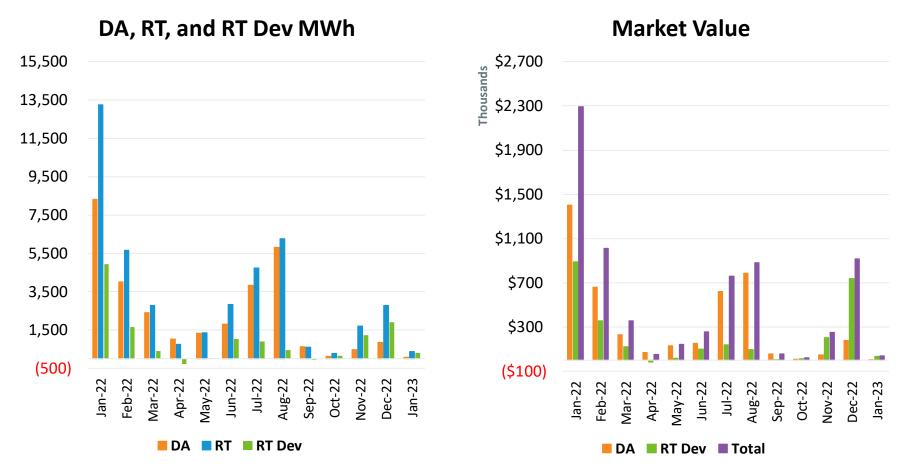
ISO-NE PUBLIC

Regular Operations Report -Highlights

3

Highlights

- Day-Ahead (DA), Real-Time (RT) Prices and Transactions
 - Update: December 2022 Energy Market value totaled \$1.3B
 - January 2023 Energy market value was \$455M, down \$873M from
 December 2022 and down \$1.3B from January 2022
 - January 2023 natural gas prices over the period were 66% lower than December average values
 - Average RT Hub Locational Marginal Prices (\$52.89/MWh) over the period were 56% lower than December averages
 - Average January 2023 natural gas prices and RT Hub LMPs over the period were down 77% and down 64%, respectively, from January 2022 averages
 - Average DA cleared physical energy during the peak hours as percent of forecasted load was 98.9% during January, up from 97.5% during December*
 - The minimum value for the month was 92.1% on Tuesday, January 3^{rd**}



Highlights, cont.

- Daily Net Commitment Period Compensation (NCPC)
 - January 2023 NCPC payments totaled \$2.1M over the period, down \$4.5M from December 2022 and down \$2.3M from January 2022
 - First Contingency payments totaled \$2M, down \$4.5M from December
 - \$1.9M paid to internal resources, down \$4.5M from December
 - » \$384K charged to DALO, \$872K to RT Deviations, \$687K to RTLO*
 - \$33K paid to resources at external locations, up \$3K from December
 - » \$3K charged to DALO at external locations, \$31K to RT Deviations
 - Second Contingency payments totaled \$75K, down \$3K from December
 - Voltage and Distribution payments were zero
 - NCPC payments over the period as percent of Energy Market value were 0.5%

* NCPC types reflected in the First Contingency Amount: Dispatch Lost Opportunity Cost (DLOC) - \$284K; Rapid Response Pricing (RRP) Opportunity Cost - \$403K; Posturing - \$0K; Generator Performance Auditing (GPA) - \$0K

Price Responsive Demand (PRD) Energy Market Activity by Month

Note: DA and RT (deviation) MWh are settlement obligations and reflect appropriate gross-ups for distribution losses.

Highlights

- The Economic Study Process Improvement project to update Attachment K of the OATT was filed with FERC on January 27
- Preparations are ongoing for FCA 17, which will commence on March 6
- Public Meeting date for the 2023-24 RSP is set for November 1 and will be held concurrently with the ISO Open Board Meeting
- The next Load Forecast Committee meeting is scheduled for February 24 and will include discussions of electrification forecasts and draft energy and demand forecasts

Highlights

- The lowest 50/50 and 90/10 Winter Operable Capacity Margins are projected for week beginning February 11, 2023.
- The lowest 50/50 and 90/10 Preliminary Spring Operable Capacity Margins are projected for week beginning May 13, 2023.

Forward Capacity Market (FCM) Highlights

- CCP 14 (2023-2024)
 - Third and final annual reconfiguration auction (ARA3) will be held on March 1-3, and results will be posted no later than March 31
- CCP 15 (2024-2025)
 - Second annual reconfiguration auction (ARA2) will be held on August 1-3, and results will be posted no later than August 31
- CCP 16 (2025-2026)
 - First annual reconfiguration auction (ARA1) will be held on June 1-5, and results will be posted no later than July 3

FCM Highlights, cont.

- CCP 17 (2026-2027)
 - FCA 17 will model the following zones:
 - Export-constrained zones: Northern New England and Maine nested inside Northern New England
 - Rest-of-Pool
 - FCA 17 Installed Capacity Requirement and related values were filed with FERC on November 8, 2022
 - ISO submitted the FCA 17 informational filing to FERC on December 21, 2022

ISO-NE PUBLIC

10

- Preparations are ongoing for the auction, which will commence on March 6

FCM Highlights, cont.

- CCP 18 (2027-2028)
 - The qualification process has started, and training materials are under development
 - Topology certifications were sent to the TOs on October 11, 2022
 - TOs identified in-service dates for new transmission projects and revisions to previously certified projects
 - Approved projects were shared with the RC at their January meeting
 - Capacity zone development discussions began at the December 13, 2022 PAC meeting

ISO-NE PUBLIC

• All subsequent reconfiguration auctions model the same zones as the FCA

FOLLOW UP TO QUESTIONS FROM THE JANUARY NPC MEETING ON THE DECEMBER 24, 2022 CAPACITY SCARCITY EVENT

Timing of Generator Outages and Reductions

- The following is a timeline of the generator outages and reductions that occurred through the day (this does not include the reductions in imports between day-ahead and real-time)
 - ~1,245 MW of those outages or reductions occurred between the morning report and noon
 - ~340 MW of additional outages or reductions occurred between noon and 16:00
 - ~150 MW of generator outages or reductions following the declaration of M/LCC-2 and prior to the implementation of OP-4 at 16:30
 - ~540 MW of generator outages or reductions following the implementation of OP-4 and through the peak hour (HE18)
- In total, ~2,275 MW¹ of generating capacity that was expected to be available for the peak hour became unavailable during the operating day for a variety of reasons (see next slide)

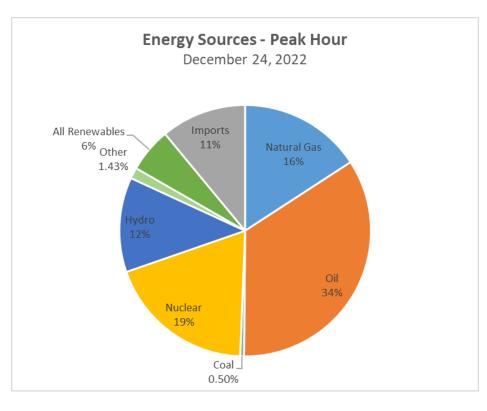
1: The total MW amount of generator outages and reductions is slightly higher than originally reported at the January NPC meeting

ISO-NE PUBLIC

Types of Generator Reductions and Outages

- Several types of generation technologies and fuel types experienced outages or reductions
 - Dual fuel generators, residual fuel oil (RFO) generators, natural gasonly generators, and distillate fuel oil (DFO) generators comprised ~33%, ~29%, ~15%, and ~13% of the generating capacity reductions (MWs) on that day
- A majority (~65%) of all generating capacity reductions were due to mechanical problems such as stuck valves, fuel pump failures, vibration, other unexpected equipment failures
- Other factors contributing to generator outages or reductions included gas scheduling issues (~15%), emissions-related restrictions (~7%)

Estimated Fuel-Oil Burn and Replenishment Between December 20th and January 3rd


- Based on generator surveys submitted by Market Participants, ISO estimates that between December 20th and January 3rd
 - ~30.6M gallons of fuel-oil was burned and ~19.1M gallons of fuel-oil replenishment occurred¹
 - Fuel-oil burn was ~51% RFO and ~49% DFO
 - Of the fuel-oil replenishment that occurred, ~54% was RFO and ~46% was DFO

1: ISO's estimates for fuel-oil burn and replenishment are slightly lower than originally reported at the January NPC meeting due to revised generator survey responses submitted by Market Participants

Peak Hour Energy From Dual Fuel Resources

ISO-NE PUBLIC

 Of the energy produced by oil-fired generators (~34% of total energy) during the peak hour of the operating day, ISO estimates that ~50% was produced by dual fuel resources that were burning DFO

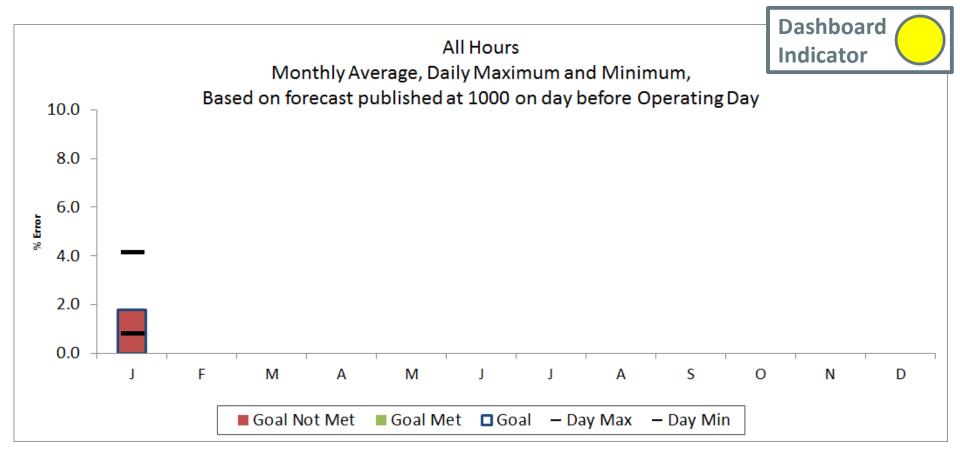
SYSTEM OPERATIONS

System Operations

Weather Patterns	Boston	Max Prec Norr	perature: Above Normal (7.9°F) : 58°F, Min: 23°F ipitation: 5.19" – Above Normal mal: 3.18" w: 6.6"		Hartford	Max: 56°F, I	n 5.81" – Above Normal
Peak Load: 17,114 MW Janu				January 2	16, 2023		18:00 (ending)

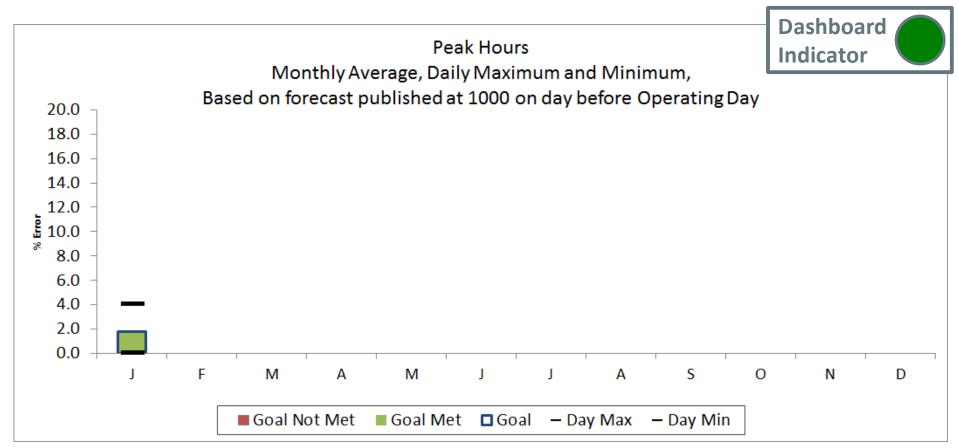
					1
Emergency Procedure	e Events (OP-4,	M/LCC 2,	Minimum	Generation	Emergency)

Procedur	e	Declared	Cancelled	Note		
			None			


System Operations

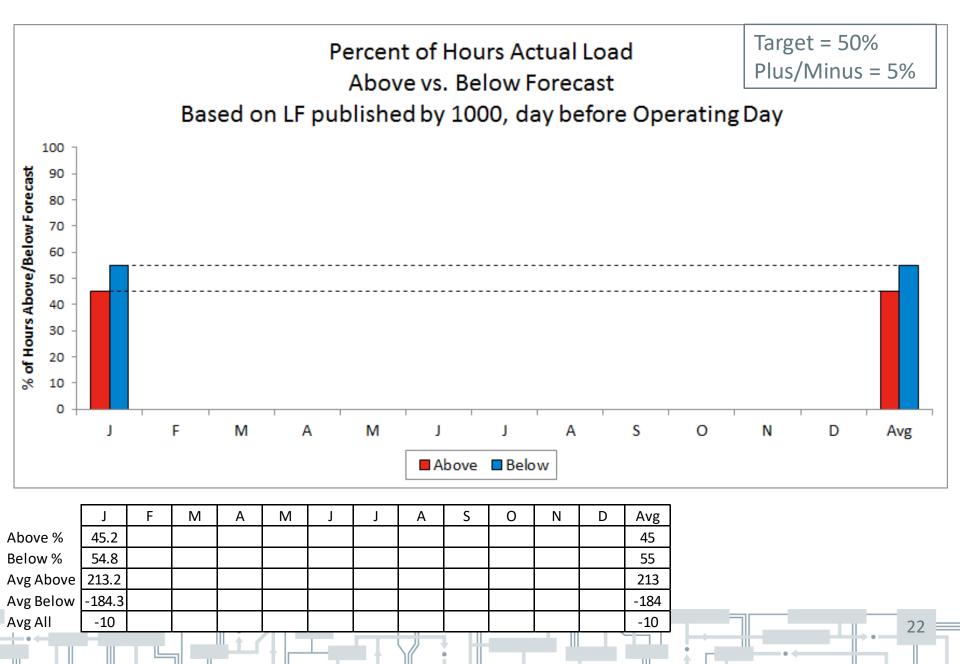
NPCC Simultaneous Activation of Reserve Events

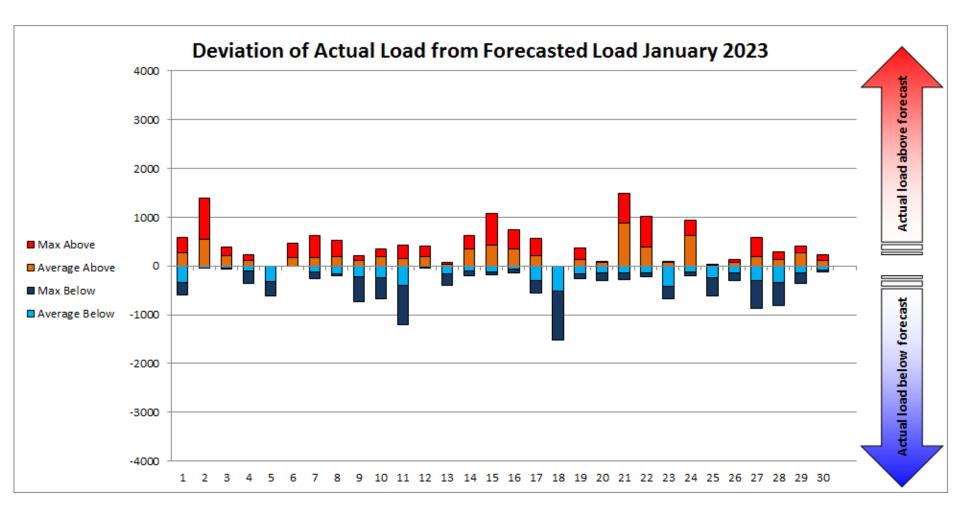
Date	Area	MW Lost
1/05/2023	IESO	1050
1/05/2023	PJM	1248


2023 System Operations - Load Forecast Accuracy

ISO-NE PUBLIC

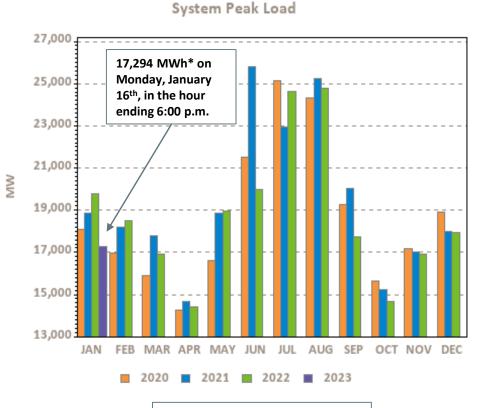
Month	J	F	М	А	М	J	J	А	S	0	N	D	
Day Max	4.14												4.14
Day Min	0.80												0.80
MAPE	1.83												1.83
Goal	1.80												


2023 System Operations - Load Forecast Accuracy cont.

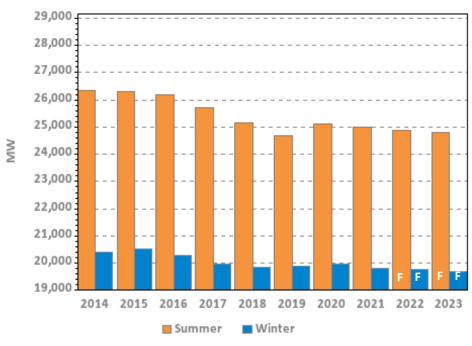

ISO-NE PUBLIC

Month	J	F	М	А	М	J	J	А	S	0	Ν	D	
Day Max	4.05												4.05
Day Min	0.01												0.01
MAPE	1.65												1.65
Goal	1.80												

2023 System Operations - Load Forecast Accuracy cont.



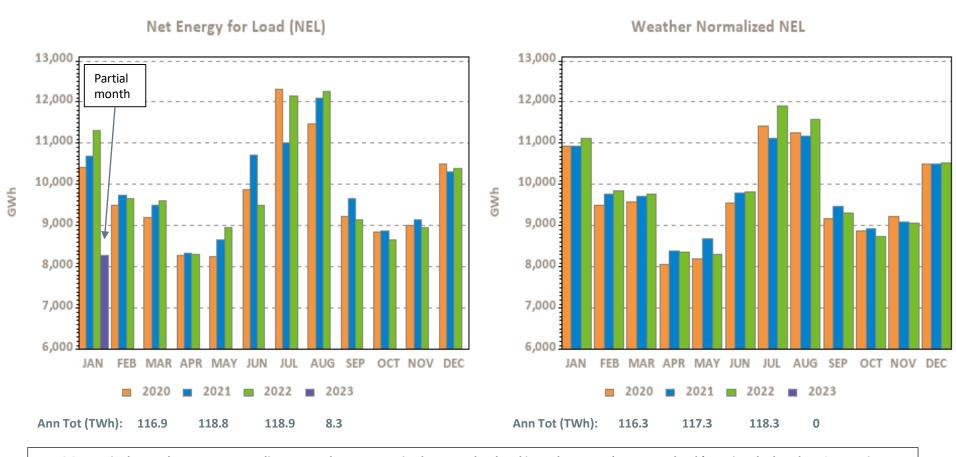
2023 System Operations - Load Forecast Accuracy cont.



Monthly Peak Loads and Weather Normalized Seasonal Peak History

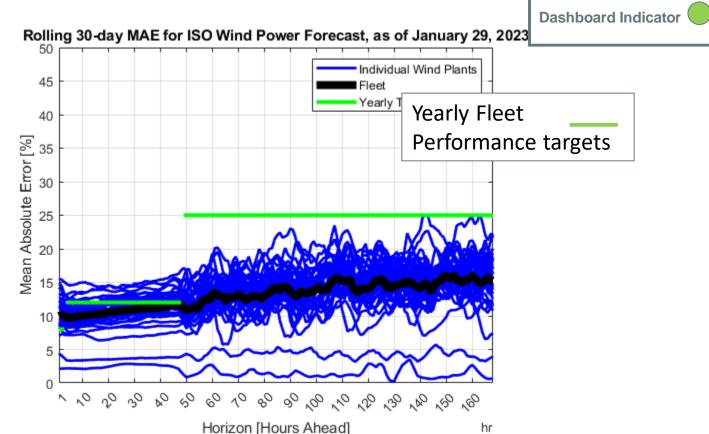
ISO-NE PUBLIC

Weather Normalized Seasonal Peaks

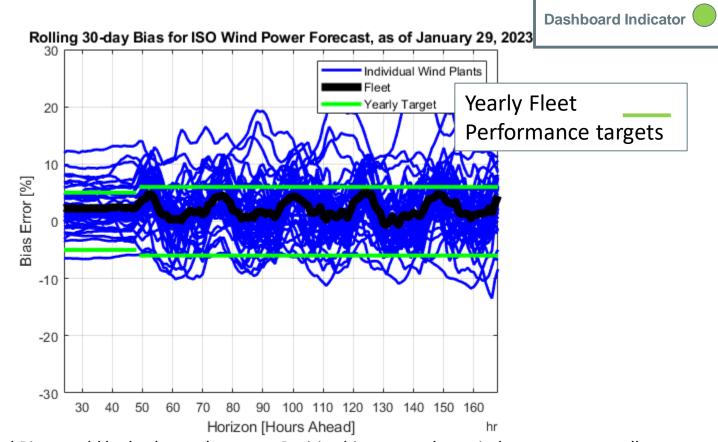


Winter beginning in year displayed

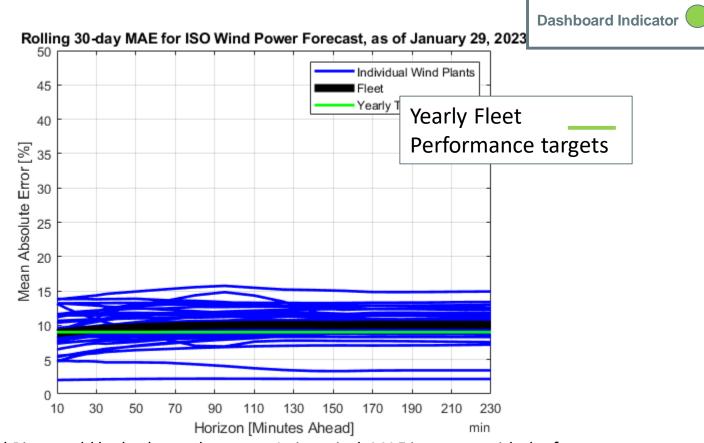
F – designates forecasted values, which are typically updated in April/May of the following year; represents "net forecast" (i.e., the gross forecast net of passive demand response and behind-the-meter solar demand)


*Revenue quality metered value

Monthly Recorded Net Energy for Load (NEL) and Weather Normalized NEL


NEPOOL NEL is the total net revenue quality metered energy required to serve load and is analogous to 'RT system load.' NEL is calculated as: Generation – pumping load + net interchange where imports are positively signed. Current month's data may be preliminary. Weather normalized NEL is typically reported on a one-month lag.

Wind Power Forecast Error Statistics: Medium and Long Term Forecasts MAE


Ideally, MAE and Bias would be both equal to zero. As is typical, MAE increases with the forecast horizon. MAE and Bias for the fleet of wind power resources are less due to offsetting errors. Across all time frames, the ISO-NE/DNV forecast is very good compared to industry standards, and, but for the one-hour look-ahead, monthly MAE is within the yearly performance targets.

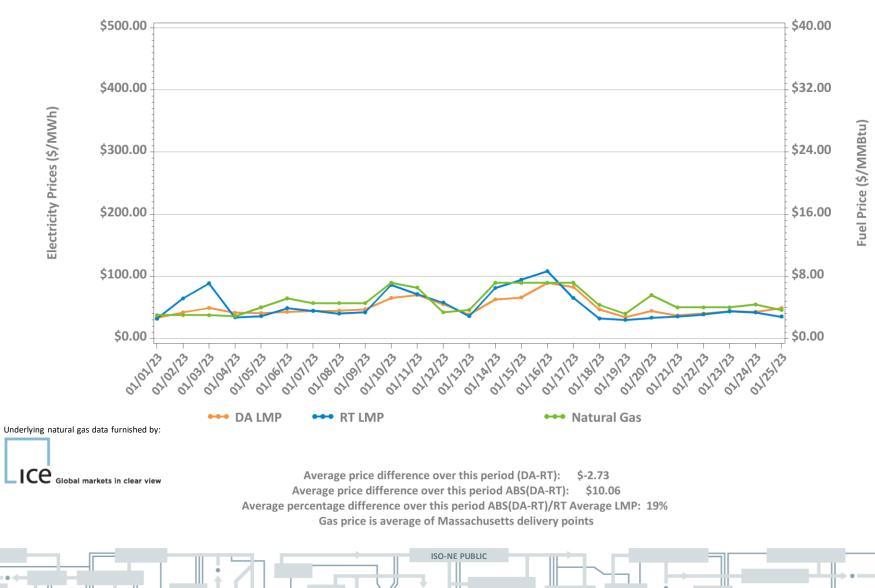
Wind Power Forecast Error Statistics: Medium and Long Term Forecasts Bias


Ideally, MAE and Bias would be both equal to zero. Positive bias means less windpower was actually available compared to forecast. Negative bias means more windpower was actually available compared to forecast. Across all time frames, the ISO-NE/DNV forecast compares well with industry standards, and monthly Bias is within yearly performance targets.

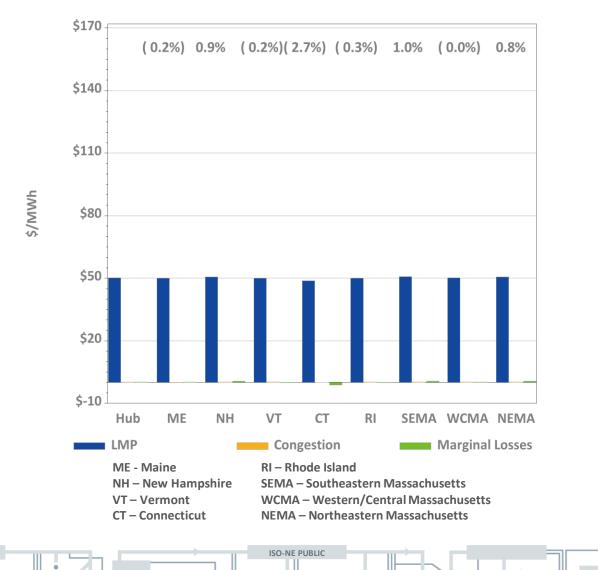
Wind Power Forecast Error Statistics: Short Term Forecast MAE

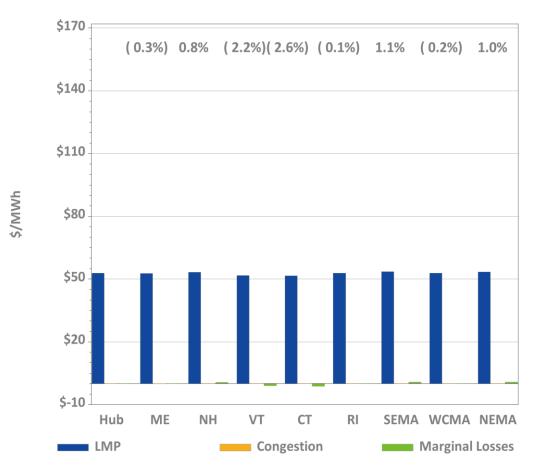
Ideally, MAE and Bias would be both equal to zero. As is typical, MAE increases with the forecast horizon. MAE and Bias for the fleet of wind power resources are less due to offsetting errors. While the forecast compares with industry standards, monthly MAE is outside yearly performance targets. The error seems related to the quality of the input data – ISO is working with wind plants to correct.

Wind Power Forecast Error Statistics: Short Term Forecast Bias



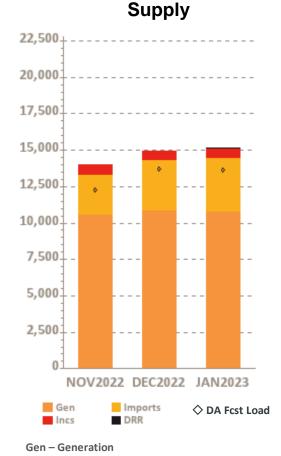
Ideally, MAE and Bias would be both equal to zero. Positive bias means less windpower was actually available compared to forecast. Negative bias means more windpower was actually available compared to forecast. Across all time frames, the ISO-NE/DNV forecast compares well with industry standards, and except for up to one-hour look-ahead, monthly Bias is within yearly performance.


MARKET OPERATIONS


Daily Average DA and RT ISO-NE Hub Prices and Input Fuel Prices: January 1-25, 2023

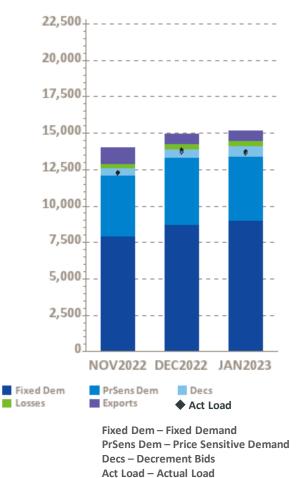
DA LMPs Average by Zone & Hub, January 2023

RT LMPs Average by Zone & Hub, January 2023

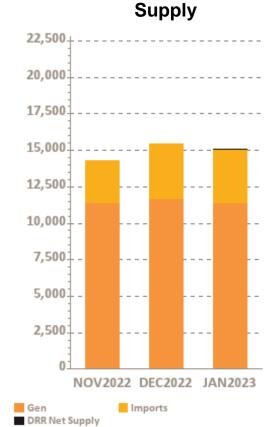

Definitions

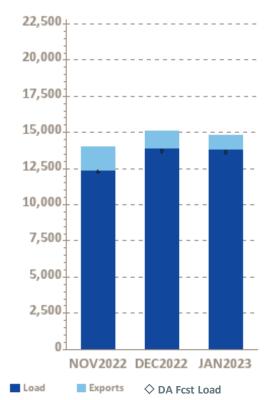
Day-Ahead Concept	Definition
Day-Ahead Load Obligation (DALO)	The sum of day-ahead cleared load (including asset load, pump load, exports, and virtual purchases and excluding modeled transmission losses)
Day-Ahead Cleared Physical Energy	The sum of day-ahead cleared generation and cleared net imports

Components of Cleared DA Supply and Demand – Last Three Months


Avg Hourly MW

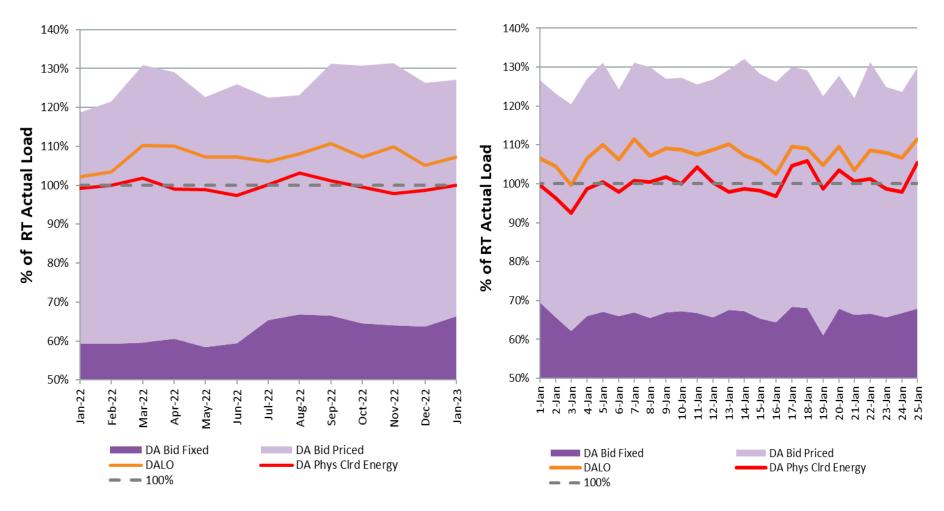
Avg Hourly MW


Gen – Generation Incs – Increment Offers DA Fcst Load – Day-Ahead Forecast Load DRR – Demand Response Resource


ISO-NE PUBLIC

Demand

Components of RT Supply and Demand – Last Three Months

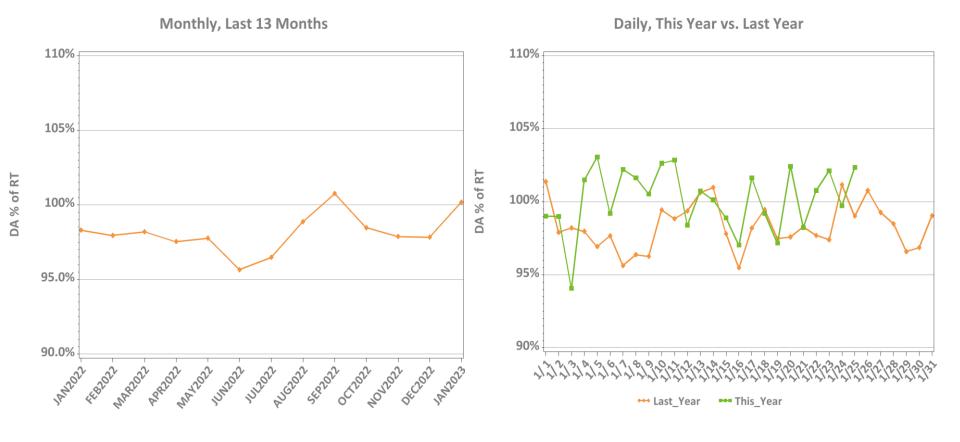


Avg Hourly MW

ISO-NE PUBLIC

Demand

DAM Volumes as % of RT Actual Load (Forecasted Peak Hour)



Note: Forecasted peak hour for each day is reflected in the above values. Shown for each day (chart on right) and then averaged for each month (chart on left). 'DA Bid' categories reflect load assets only (Virtual and export bids not reflected.)

37

ISO-NE PUBLIC

DA vs. RT Load Obligation: January, This Year vs. Last Year

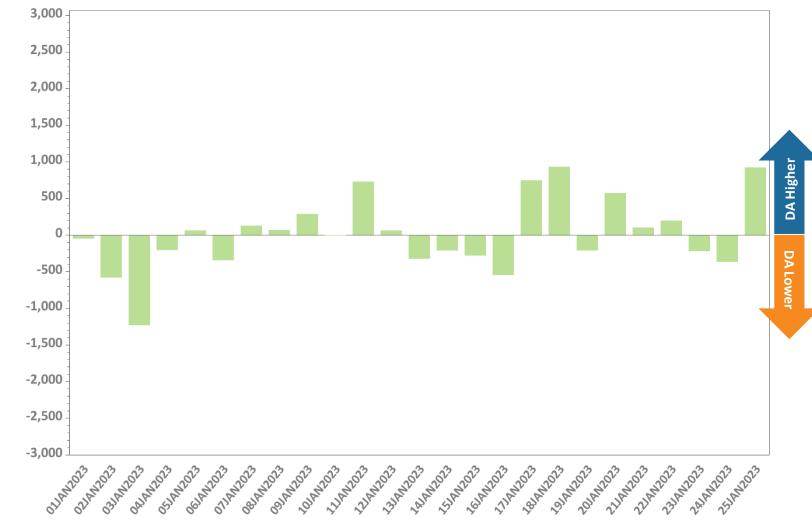
ISO-NE PUBLIC

38

*Hourly average values

DA Volumes as % of Forecast in Peak Hour

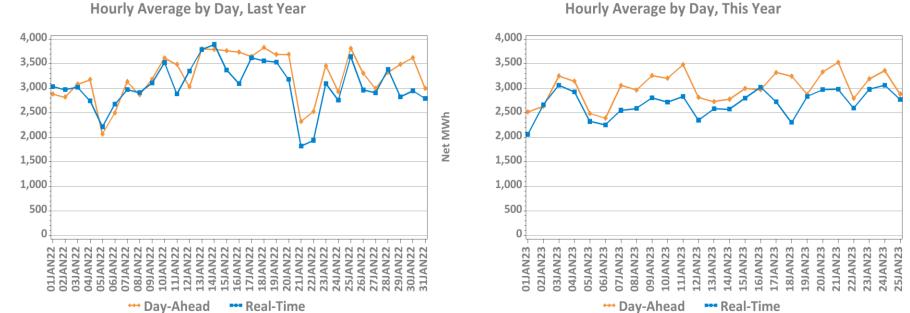
Monthly, Last 13 Months


110% 116% 105% 108% 100% 100% 95.0% 92.0% 90.0% 84.0% MARIOIL AUG2022 5522022 142022 *E82022 Page 02 MAY2022 1112022 05(2022 HOYDOZ 1112022 D2 DEC2022 1AN2023 011/11/23 0814123 0914123 OIAN23 TIANZS 314123 AJAN23 151AN23 TIAN23 91AN23 25JAN23 212123 GIANZ BIANZ AIANZ +++ DA Cleared Physical Energy +++ DALO **Hold Physical Energy** +++ DALO 100% line 100% line

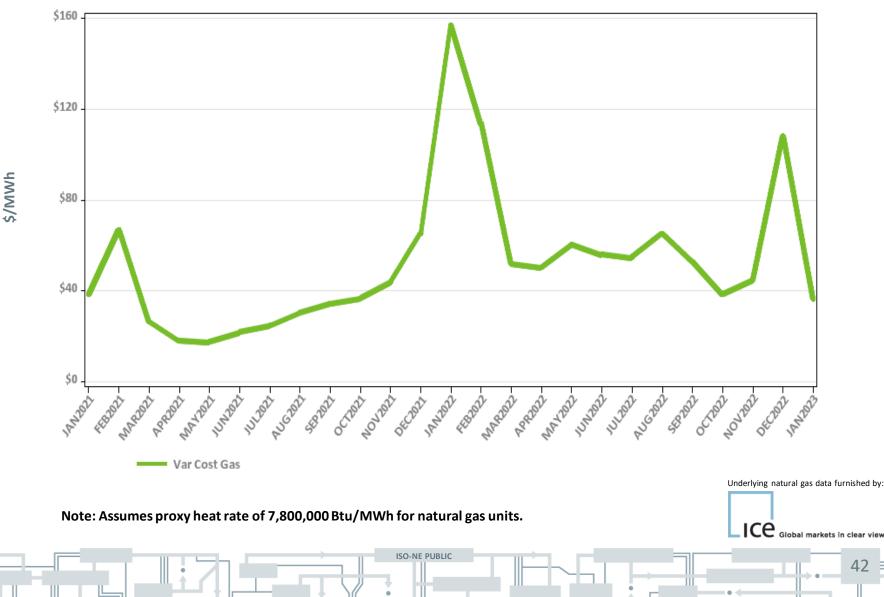
Daily: This Month

Note: There were no system-level manual supplemental commitments for capacity required during the Reserve Adequacy Assessment (RAA) period during the month.

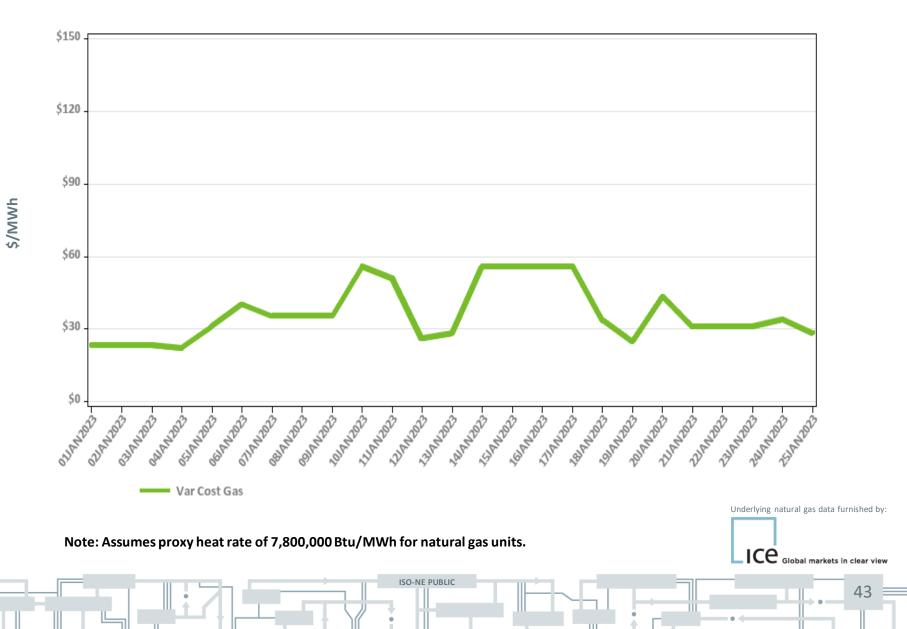
ISO-NE PUBLIC


DA Cleared Physical Energy Difference from RT System Load at Forecasted Peak Hour*

40

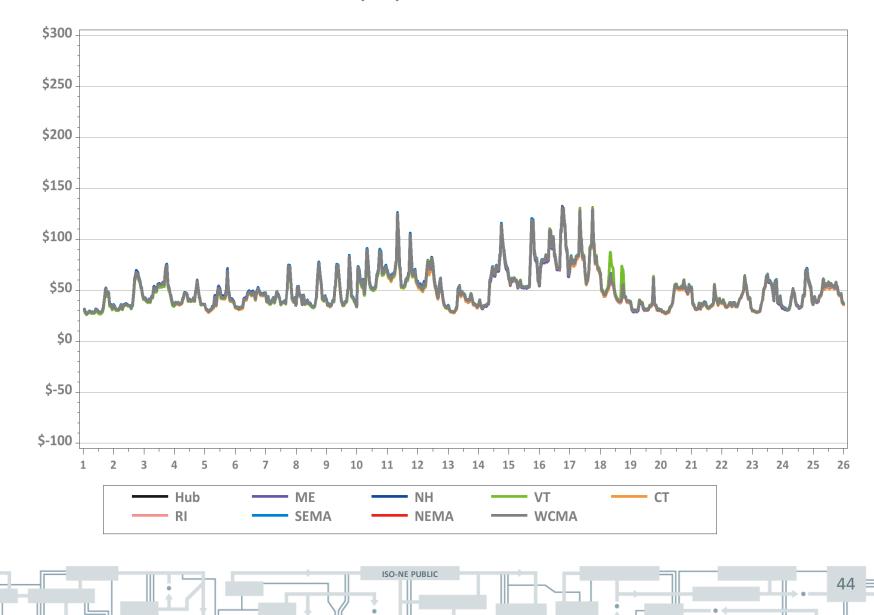

*Negative values indicate DA Cleared Physical Energy value below its RT counterpart. Forecast peak hour reflected.

DA vs. RT Net Interchange January 2023 vs. January 2022



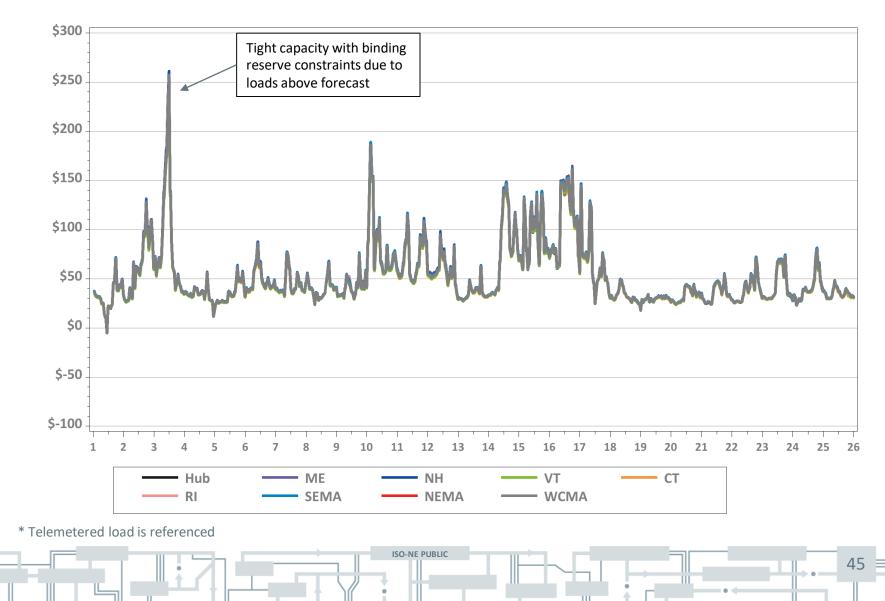
Net Interchange is the sum of daily imports minus the sum of daily exports Positive values are net imports

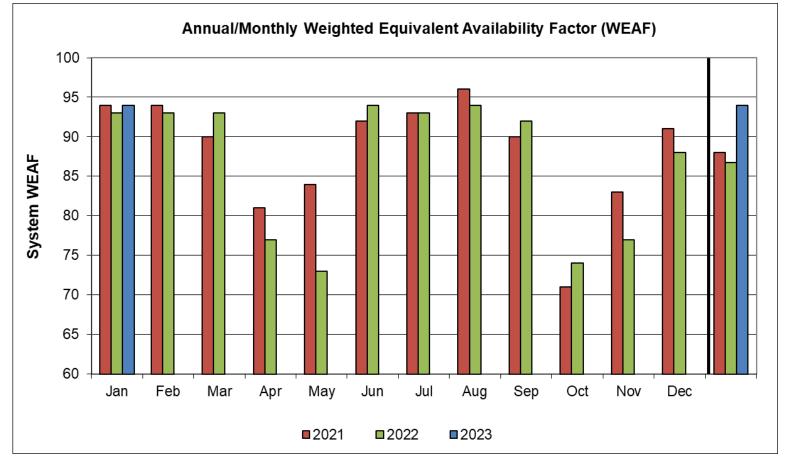
Variable Production Cost of Natural Gas: Monthly



Variable Production Cost of Natural Gas: Daily

Hourly DA LMPs, January 1-25, 2023


Hourly Day-Ahead LMPs


\$/MWh

Hourly RT LMPs, January 1-25, 2023

Hourly Real-Time LMPs

System Unit Availability

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	YTD
2023	94												94
2022	93	93	93	77	73	94	93	94	92	74	77	88	87
2021	94	94	90	81	84	92	93	96	90	71	83	91	88

ISO-NE PUBLIC

Data as of 1/25/2023

BACK-UP DETAIL

DEMAND RESPONSE

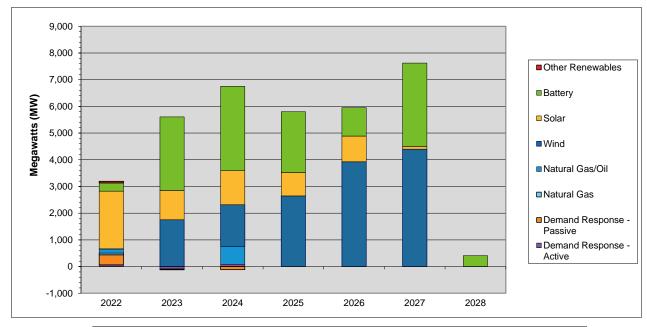
Capacity Supply Obligation (CSO) MW by Demand Resource Type for February 2023

Load			Seasonal	
Zone	ADCR*	On Peak	Peak	Total
ME	89.1	181.6	0.0	270.6
NH	32.7	180.0	0.0	212.6
VT	44.7	164.7	0.0	209.4
СТ	78.2	110.9	687.4	876.5
RI	19.8	342.9	0.0	362.7
SEMA	35.2	494.1	0.0	529.2
WCMA	64.8	535.4	14.4	614.7
NEMA	46.9	840.9	0.0	887.8
Total	411.2	2,850.5	701.8	3,963.6

ISO-NE PUBLIC

* Active Demand Capacity Resources NOTE: CSO values include T&D loss factor (8%).

NEW GENERATION



New Generation Update Based on Queue as of 1/30/23

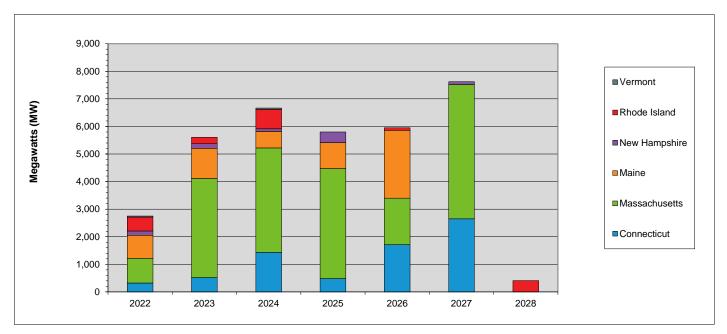
- Five projects totaling 300 MW were added to the interconnection queue since the last update
 - Three battery projects and two solar-with-battery projects with inservice dates of 2024 to 2026
- No projects were withdrawn and one project went commercial
- In total, 364 generation projects are currently being tracked by the ISO, totaling approximately 37,677 MW

ISO-NE PUBLIC

Actual and Projected Annual Capacity Additions By Supply Fuel Type and Demand Resource Type

	2022	2023	2024	2025	2026	2027	2028	Total MW	% of Total ¹
Other Renewables	63	0	0	0	0	0	0	63	0.2
Battery	305	2,756	3,163	2,276	1,062	3,122	410	13,094	37.3
Solar ²	2,162	1,098	1,277	878	964	102	0	6,481	18.5
Wind	4	1,752	1,556	2,645	3,923	4,399	0	14,279	40.7
Natural Gas/Oil ³	151	0	672	0	0	0	0	823	2.3
Natural Gas	67	0	0	0	0	0	0	67	0.2
Demand Response - Passive	380	-28	-114	0	0	0	0	238	0.7
Demand Response - Active	62	-94	86	0	0	0	0	54	0.2
Totals	3,194	5,484	6,640	5,799	5,949	7,623	410	35,099	100.0

ISO-NE PUBLIC


¹ Sum may not equal 100% due to rounding

² This category includes both solar-only, and co-located solar and battery projects

³ The projects in this category are dual fuel, with either gas or oil as the primary fuel

• DR reflects changes from the initial FCM Capacity Supply Obligations in 2010-11

Actual and Projected Annual Generator Capacity Additions By State

	2022	2023	2024	2025	2026	2027	2028	Total MW	% of Total ¹
Vermont	40	0	50	0	0	0	0	90	0.3
Rhode Island	502	236	704	0	91	0	410	1,943	5.6
New Hampshire	156	164	97	385	0	102	0	904	2.6
Maine	838	1,092	597	942	2,461	0	0	5,930	17.0
Massachusetts	893	3,594	3,786	3,989	1,686	4,873	0	18,821	54.1
Connecticut	323	520	1,434	483	1,711	2,648	0	7,119	20.5
Totals	2,752	5,606	6,668	5,799	5,949	7,623	410	34,807	100.0

¹ Sum may not equal 100% due to rounding

New Generation Projection By Fuel Type

	Total		Gre	en	Yellow		
Unit Type	No. of Capacity Projects (MW)		No. of Projects	Capacity (MW)	No. of Projects	Capacity (MW)	
Biomass/Wood Waste	0	0	0	0	0	0	
Battery Storage	84	13,094	3	32	81	13,062	
Fuel Cell	2	30	0	0	2	30	
Hydro	2	33	1	5	1	28	
Natural Gas	7	67	0	0	7	67	
Natural Gas/Oil	5	823	1	62	4	761	
Nuclear	0	0	0	0	0	0	
Solar	238	6,481	18	401	220	6,080	
Wind	26	17,149	0	0	26	17,149	
Total	364	37,677	23	500	341	37,177	

• Projects in the Natural Gas/Oil category may have either gas or oil as the primary fuel

•Green denotes projects with a high probability of going into service

•Yellow denotes projects with a lower probability of going into service or new applications

ISO-NE PUBLIC

New Generation Projection By Operating Type

	То	tal	Gre	en	Yellow		
Operating Type	No. of Projects	Capacity (MW)	No. of Projects	Capacity (MW)	No. of Projects	Capacity (MW)	
Baseload	5	70	1	5	4	65	
Intermediate	7	804	0	0	7	804	
Peaker	326	19,654	22	495	304	19,159	
Wind Turbine	26	17,149	0	0	26	17,149	
Total	364	37,677	23	500	341	37,177	

• Green denotes projects with a high probability of going into service

• Yellow denotes projects with a lower probability of going into service or new applications

ISO-NE PUBLIC

New Generation Projection By Operating Type and Fuel Type

	Total		Baseload Int		Intermediate		Peaker		Wind Turbine	
Unit Type	No. of Projects	Capacity (MW)								
Biomass/Wood Waste	0	0	0	0	0	0	0	0	0	0
Battery Storage	84	13,094	0	0	0	0	84	13,094	0	0
Fuel Cell	2	30	2	30	0	0	0	0	0	0
Hydro	2	33	2	33	0	0	0	0	0	0
Natural Gas	7	67	1	7	3	43	3	17	0	0
Natural Gas/Oil	5	823	0	0	4	761	1	62	0	0
Nuclear	0	0	0	0	0	0	0	0	0	0
Solar	238	6,481	0	0	0	0	238	6,481	0	0
Wind	26	17,149	0	0	0	0	0	0	26	17,149
Total	364	37,677	5	70	7	804	326	19,654	26	17,149

ISO-NE PUBLIC

• Projects in the Natural Gas/Oil category may have either gas or oil as the primary fuel

FORWARD CAPACITY MARKET

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		cso	Change	CSO	Change	cso	Change
			MW	MW	MW	MW	MW	MW	MW
Demand	Active	Demand	685.554	683.116	-2.438	658.659	-24.457	609.826	-48.833
Demand	Passive	Demand	3,354.69	3,407.507	52.817	3,450.899	43.392	3,512.604	61.705
	Demand Total		4,040.244	4,090.623	50.38	4,109.558	18.935	4,122.43	12.872
Gene	rator	Non-Intermittent	28,586.498	27,868.341	-718.157	28,105.411	237.07	27,426.242	-679.169
		Intermittent	1,024.792	901.672	-123.12	896.285	-5.387	778.962	-117.323
	Generator Total		2,9611.29	28,770.013	-841.28	29,001.696	231.683	28,205.204	-796.492
	Import Total		1,187.69	1,292.41	104.72	1,292.41	0	1,115.22	-177.19
	Grand Total*		34,839.224	34,153.046	-686.18	34,403.664	250.618	33,442.854	-960.81
	Net ICR (NICR)		33,750	32,465	-1,285	32,765	300	31,590	-1,175

* Grand Total reflects both CSO Grand Total and the net total of the Change Column

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2020 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

ISO-NE PUBLIC

ARA – Annual Reconfiguration Auction CSO – Capacity Supply Obligation FCA – Forward Capacity Auction ICR – Installed Capacity Requirement

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		CSO	Change	CSO	Change	CSO	Change
			MW	MW	MW	MW	MW	MW	MW
Demand	Active	Demand	592.043	688.07	96.027	659.671	-28.399		
Demand	Passive	Demand	3,327.071	3,327.932	0.861	3,315.207	-12.725		
	Demand Total		3,919.114	4,016.002	96.888	3,974.878	-41.124		
Gene	rator	Non-Intermittent	27,816.902	28,275.143	458.241	27,697.714	-577.429		
		Intermittent	1,160.916	1,128.446	-32.47	925.942	-202.504		
	Generator Total		28,977.818	29,403.589	425.771	28,623.656	-779.933		
	Import Total		1,058.72	1,058.72	0	1,029.800	-28.92		
	Grand Total*		33,955.652	34,478.311	522.661	33,628.334	-849.977		
	Net ICR (NICR)		32,490	32,980	490	31,480	-1,500		

* Grand Total reflects both CSO Grand Total and the net total of the Change Column

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2022 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		cso	Change	CSO	Change	cso	Change
				MW	MW	MW	MW	MW	MW
Demand	Active	Demand	677.673	673.401	-4.272				
Demand	Passive	Demand	3,212.865	3,211.403	-1.462				
	Demand Total		3,890.538	3,884.804	-5.734				
Gene	rator	Non-Intermittent	28,154.203	27,714.778	-439.425				
		Intermittent	1,089.265	1,073.794	-15.471				
	Generator Total		29,243.468	28,788.572	-454.896				
	Import Total		1,487.059	1297.132	-189.927				
	Grand Total*		34,621.065	33,970.508	-650.557				
	Net ICR (NICR)		33,270	31,775	-1,495				

* Grand Total reflects both CSO Grand Total and the net total of the Change Column

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2022 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

ISO-NE PUBLIC

			FCA	AR	A 1	AR	A 2	AR	A 3
Resource Type	Resour	Resource Type		cso	Change	cso	Change	cso	Change
				MW	MW	MW	MW	MW	MW
Demand	Active	Demand	765.35						
Demand	Passive	Demand	2,557.256						
	Demand Total		3,322.606						
Gene	rator	Non-Intermittent	26,805.003						
		Intermittent	1,178.933						
	Generator Total		27,983.936						
	Import Total		1,503.842						
	Grand Total*		32,810.384						
Net ICR (NICR)		31,645							

* Grand Total reflects both CSO Grand Total and the net total of the Change Column

Note: A resource's CSO may change for a variety of reasons outside ISO-NE administered trading windows. Reasons for CSO changes beyond bilaterals and reconfiguration auction may include terminations or recent declaration of commercial operation. Details of the changes that occurred due to non-annual event purposes are contained in the 2015-2022 CCP Monthly Capacity Supply Obligation Changes report on the ISO New England website.

ISO-NE PUBLIC

Active/Passive Demand Response CSO Totals by Commitment Period

Commitment Period	Active/Passive	Existing	New	Grand Total
	Active	357.221	20.304	377.525
2019-20	Passive	2,018.20	350.43	2,368.63
	Grand Total	2,375.422	370.734	2,746.156
	Active	334.634	85.294	419.928
2020-21	Passive	2,236.73	554.292	2,791.02
	Grand Total	2,571.361	639.586	3,210.947
	Active	480.941	143.504	624.445
2021-22	Passive	2,604.79	370.568	2,975.36
	Grand Total	3,085.734	514.072	3,599.806
	Active	598.376	87.178	685.554
2022-23	Passive	2,788.33	566.363	3,354.69
	Grand Total	3,386.703	653.541	4,040.244
	Active	560.55	31.493	592.043
2023-24	Passive	3,035.51	291.565	3,327.07
	Grand Total	3,596.056	323.058	3,919.114
	Active	674.153	3.520	677.673
2024-25	Passive	3,046.064	166.801	3,212.865
	Grand Total	3,720.217	170.321	3,890.538
	Active	664.01	101.34	765.35
2025-26	Passive	2,428.638	128.618	2557.256
	Grand Total	3,092.648	229.958	3,322.606

ISO-NE PUBLIC

RELIABILITY COSTS – NET COMMITMENT PERIOD COMPENSATION (NCPC) OPERATING COSTS

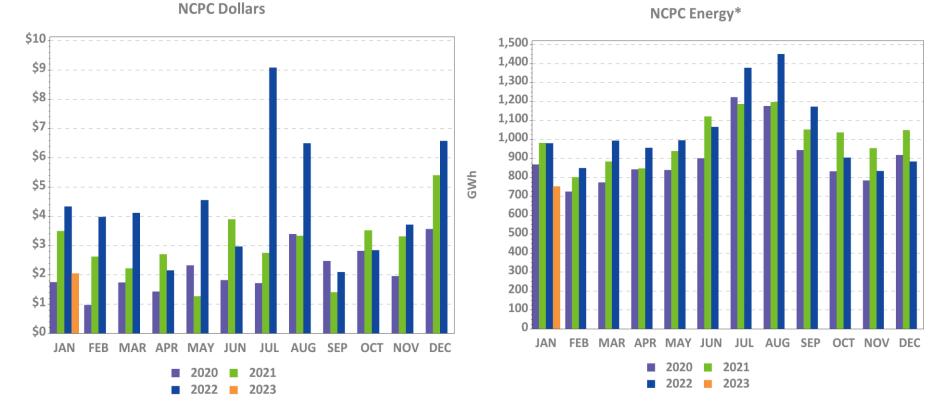
What are Daily NCPC Payments?

- Payments made to resources whose commitment and dispatch by ISO-NE resulted in a shortfall between the resource's offered value in the Energy and Regulation Markets and the revenue earned from output during the day
- Typically, this is the result of some out-of-merit operation of resources occurring in order to protect the overall resource adequacy and transmission security of specific locations or of the entire control area
- NCPC payments are intended to make a resource that follows the ISO's operating instructions "no worse off" financially than the best alternative generation schedule

Definitions

OATT	modeled in the DA Market software Open Access Transmission Tariff	
Distribution NCPC Payments	Reliability costs paid to units dispatched at the request of local transmission providers for purpose of managing constraints on the low voltage (distribution) system. These requirements are not	
Voltage NCPC Payments	Reliability costs paid to resources operated by ISO-NE to provide voltage support or control in specific locations	
2 nd Contingency NCPC Payments	Reliability costs paid to resources providing capacity in constrained areas to respond to a local second contingency. They are committed based on 2 nd Contingency (2ndC) protocols, and are also known as Local Second Contingency Protection Resources (LSCPR)	
1 st Contingency NCPC Payments	Reliability costs paid to eligible resources that are providing first contingency (1stC) protection (including low voltage, system operating reserve, and load serving) either system-wide or locally	

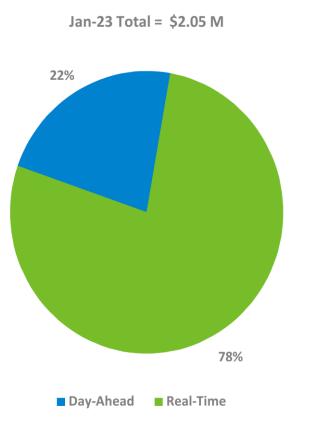
ISO-NE PUBLIC


• ----

Charge Allocation Key

Allocation Category	Market / OATT	Allocation
System 1 st Contingency	Market	DA 1 st C (excluding at external nodes) is allocated to system DALO. RT 1 st C (at all locations) is allocated to System 'Daily Deviations'. Daily Deviations = sum of(generator deviations, load deviations, generation obligation deviations at external nodes, increment offer deviations)
External DA 1 st Contingency	Market	DA 1 st C at external nodes (from imports, exports, Incs and Decs) are allocated to activity at the specific external node or interface involved
Zonal 2 nd Contingency	Market	DA and RT 2 nd C NCPC are allocated to load obligation in the Reliability Region (zone) served
System Low Voltage	OATT	(Low) Voltage Support NCPC is allocated to system Regional Network Load and Open Access Same-Time Information Service (OASIS) reservations
Zonal High Voltage	OATT	High Voltage Control NCPC is allocated to zonal Regional Network Load
Distribution - PTO	OATT	Distribution NCPC is allocated to the specific Participant Transmission Owner (PTO) requesting the service
System – Other	Market	Includes GPA, Economic Generator/DARD Posturing, Dispatch Lost Opportunity Cost (DLOC), and Rapid Response Pricing (RRP) Opportunity Cost NCPC (allocated to RTLO); and Min Generation Emergency NCPC (allocated to RTGO).

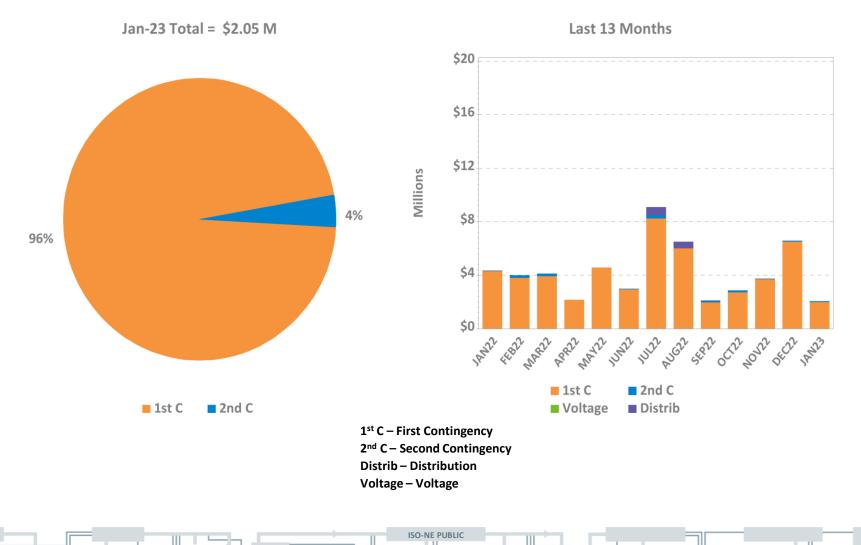
ISO-NE PUBLIC


Year-Over-Year Total NCPC Dollars and Energy

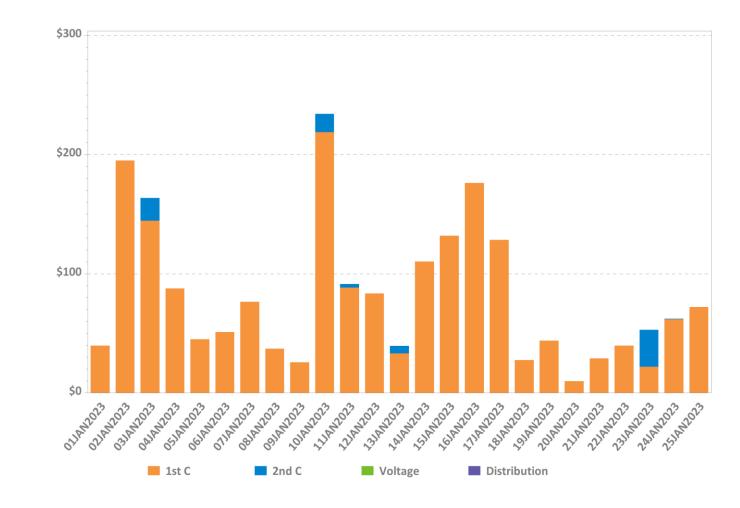
* NCPC Energy GWh reflect the DA and/or RT economic minimum loadings of all units receiving DA or RT NCPC credits (except for DLOC, RRP, or posturing NCPC), assessed during hours in which they are NCPC-eligible. Scheduled MW for external transactions receiving NCPC are also reflected. All NCPC components (1st Contingency, 2nd Contingency, Voltage, and RT Distribution) are reflected.

ISO-NE PUBLIC

DA and RT NCPC Charges

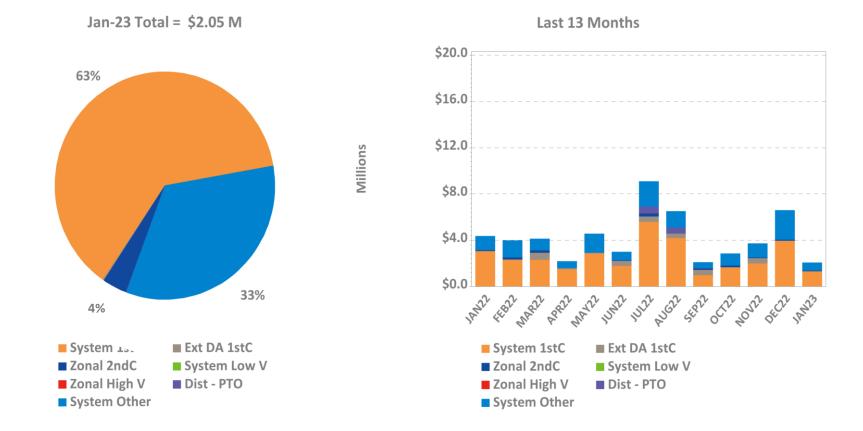


Last 13 Months



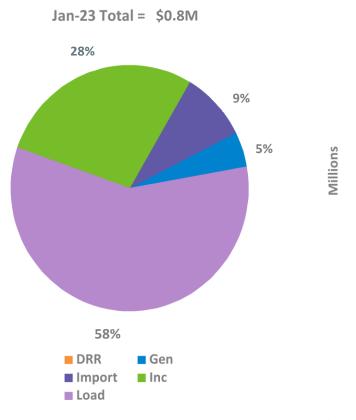
Millions

NCPC Charges by Type


Daily NCPC Charges by Type

ISO-NE PUBLIC

Thousand


NCPC Charges by Allocation


Note: 'System Other' includes, as applicable: Resource Economic Posturing, GPA, Min Gen Emergency, Dispatch Lost Opportunity Cost (DLOC), and Rapid Response Pricing (RRP) Opportunity Cost credits.

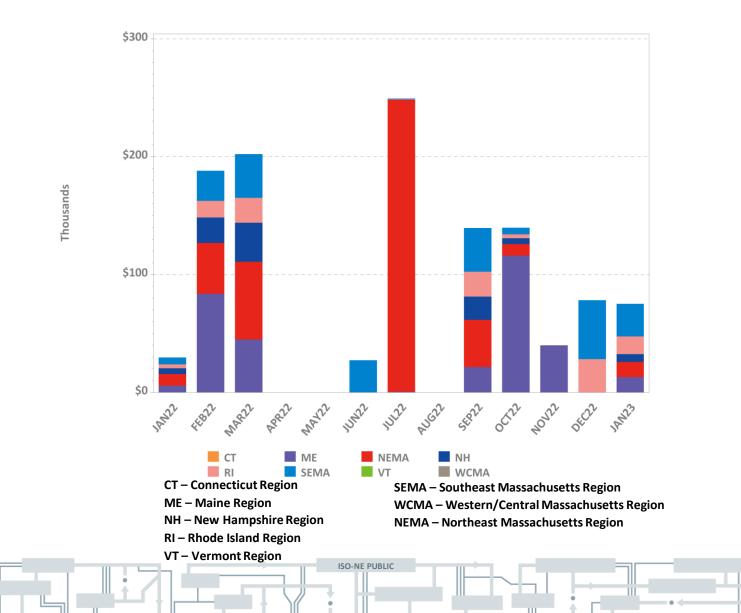
ISO-NE PUBLIC

RT First Contingency Charges by Deviation Type

Last 13 Months

DRR – Demand Response Resource deviations

ISO-NE PUBLIC


Gen – Generator deviations

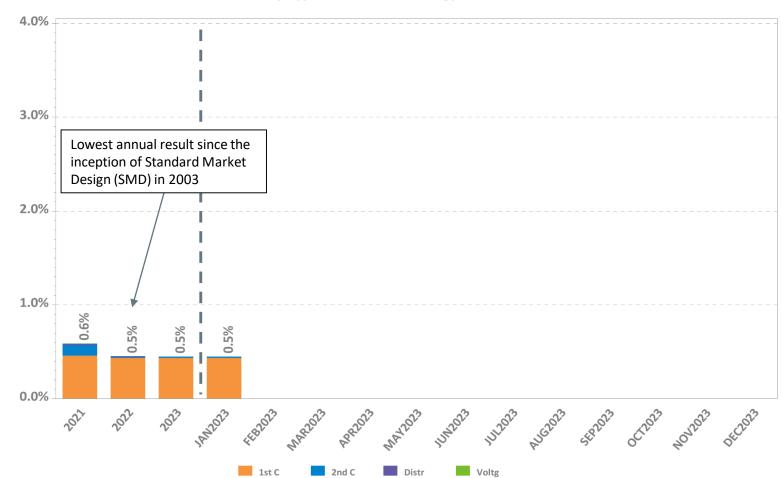
Inc – Increment Offer deviations


Import – Import deviations

Load – Load obligation deviations

LSCPR Charges by Reliability Region

NCPC Charges by Type

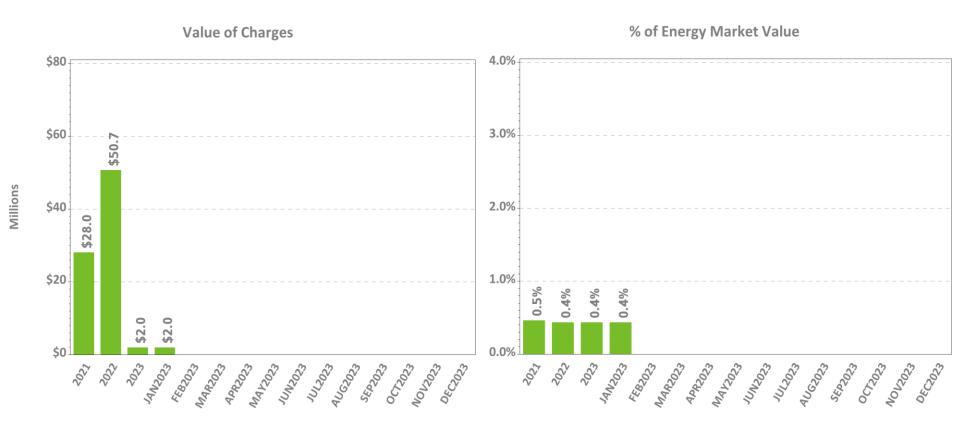


ISO-NE PUBLIC

74

Millions

NCPC Charges as Percent of Energy Market

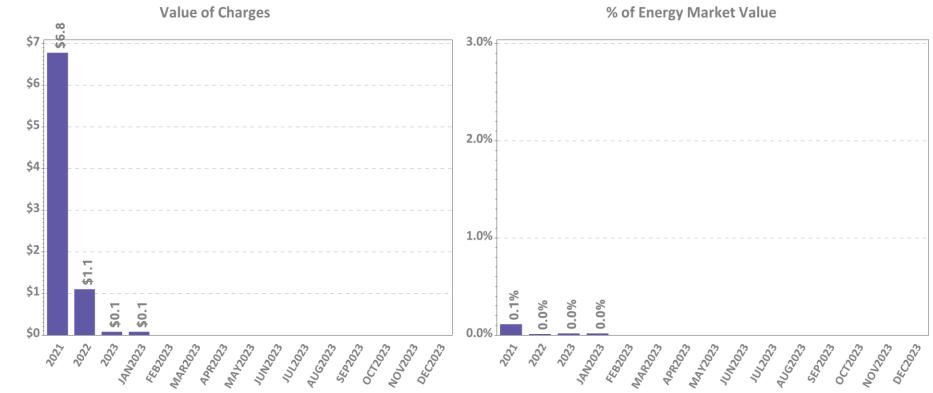

ISO-NE PUBLIC

75

NCPC By Type as Percent of Energy Market

Percent

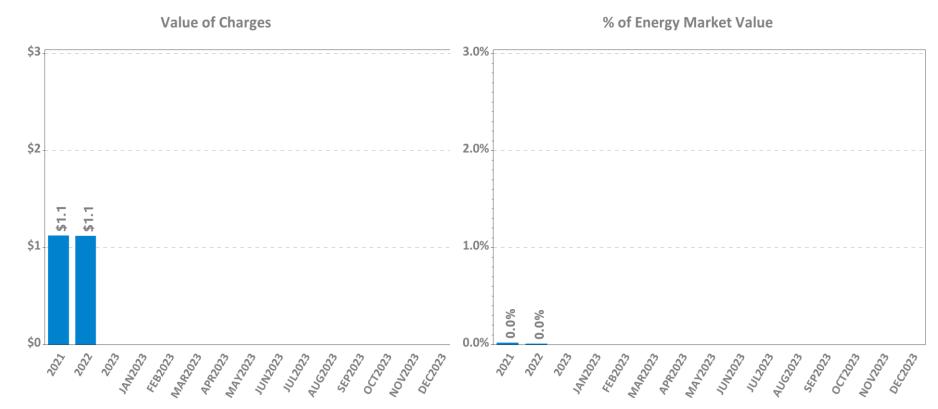
First Contingency NCPC Charges



Note: Energy Market value is the hourly locational product of load obligation and price in the DA Market plus the hourly locational product of price and RT Load Obligation Deviation in the RT Market

ISO-NE PUBLIC

٦٢


Second Contingency NCPC Charges

Note: Energy Market value is the hourly locational product of load obligation and price in the DA Market plus the hourly locational product of price and RT Load Obligation Deviation in the RT Market

ISO-NE PUBLIC

Voltage and Distribution NCPC Charges

Note: Energy Market value is the hourly locational product of load obligation and price in the DA Market plus the hourly locational product of price and RT Load Obligation Deviation in the RT Market

ISO-NE PUBLIC

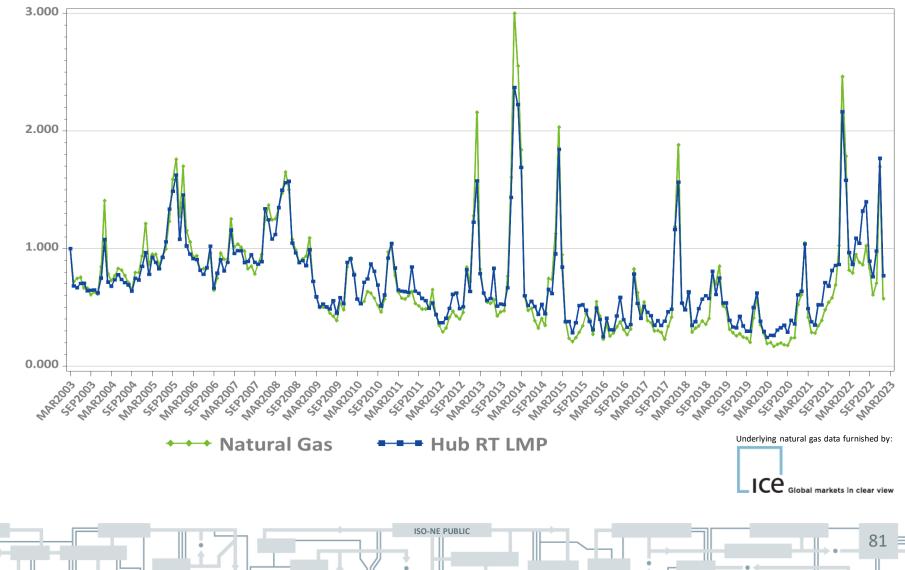
DA vs. RT Pricing

The following slides outline:

• This month vs. prior year's average LMPs and fuel costs

ISO-NE PUBLIC

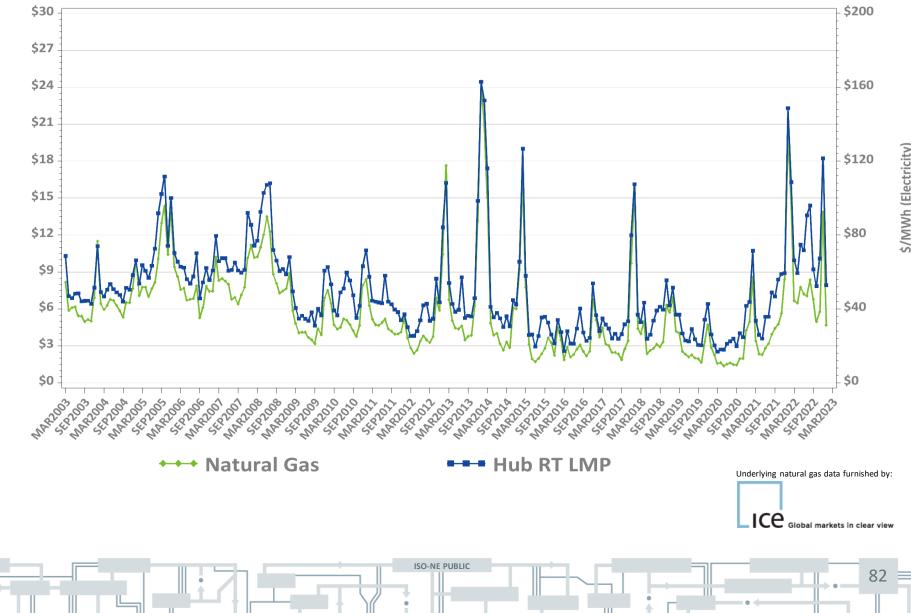
- Reserve Market results
- DA cleared load vs. RT load
- Zonal and total incs and decs
- Self-schedules
- DA vs. RT net interchange

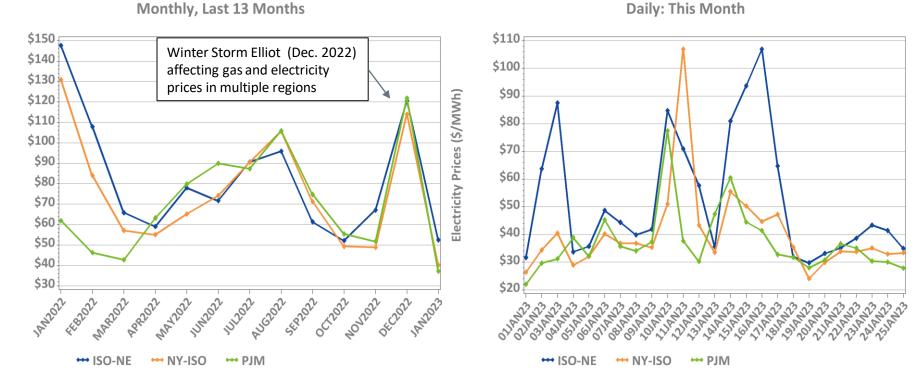

DA vs. RT LMPs (\$/MWh)

			Ari	thmetic A	verage				
Year 2021	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$46.54	\$44.60	\$45.52	\$46.27	\$45.05	\$45.88	\$46.38	\$45.91	\$45.92
Real-Time	\$45.25	\$43.97	\$44.28	\$45.10	\$44.15	\$44.61	\$45.09	\$44.85	\$44.84
RT Delta %	-2.8%	-1.4%	-2.7%	-2.5%	-2.0%	-2.8%	-2.8%	-2.3%	-2.3%
Year 2022	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$86.07	\$84.05	\$84.15	\$85.73	\$84.46	\$85.35	\$86.01	\$85.66	\$85.55
Real-Time	\$85.42	\$83.83	\$83.06	\$85.07	\$83.67	\$84.71	\$85.37	\$85.00	\$84.92
RT Delta %	-0.8%	-0.3%	-1.3%	-0.8%	-0.9%	-0.7%	-0.7%	-0.8%	-0.7%

January-22	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$149.64	\$146.73	\$146.69	\$148.97	\$148.45	\$149.26	\$149.68	\$149.61	\$149.46
Real-Time	\$148.95	\$146.50	\$145.22	\$148.63	\$147.16	\$148.65	\$149.12	\$148.80	\$148.66
RT Delta %	-0.5%	-0.2%	-1.0%	-0.2%	-0.9%	-0.4%	-0.4%	-0.5%	-0.5%
January-23	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Day-Ahead	\$50.59	\$48.80	\$50.05	\$50.62	\$50.07	\$50.03	\$50.68	\$50.14	\$50.16
Real-Time	\$53.44	\$51.51	\$52.74	\$53.30	\$51.74	\$52.81	\$53.49	\$52.80	\$52.89
RT Delta %	5.6%	5.5%	5.4%	5.3%	3.3%	5.6%	5.5%	5.3%	5.4%
Annual Diff.	NEMA	СТ	ME	NH	VT	RI	SEMA	WCMA	Hub
Yr over Yr DA	-66.2%	-66.7%	-65.9%	-66.0%	-66.3%	-66.5%	-66.1%	-66.5%	-66.4%
Yr over Yr RT	-64.1%	-64.8%	-63.7%	-64.1%	-64.8%	-64.5%	-64.1%	-64.5%	-64.4%

ISO-NE PUBLIC

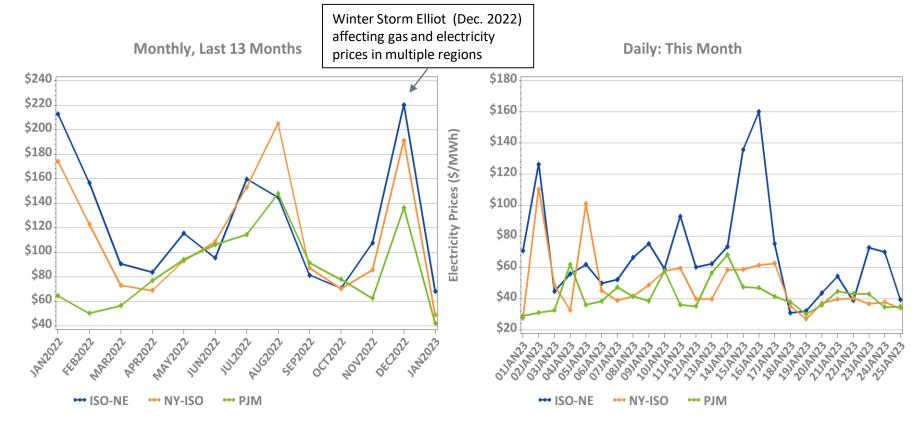

Monthly Average Fuel Price and RT Hub LMP Indexes


March 2003=1.000

Monthly Average Fuel Price and RT Hub LMP

\$/MMBtu (Fuel)

New England, NY, and PJM Hourly Average Real Time Prices by Month


*Note: Hourly average prices are shown.

Electricity Prices (\$/MWh)

*Note: Hourly average prices are shown.

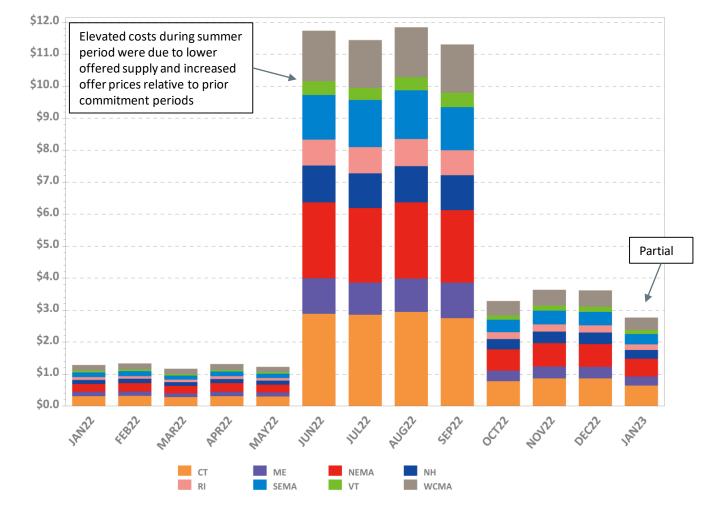
New England, NY, and PJM Average Peak Hour Real Time Prices

ISO-NE PUBLIC

84

*Forecasted New England daily peak hours reflected

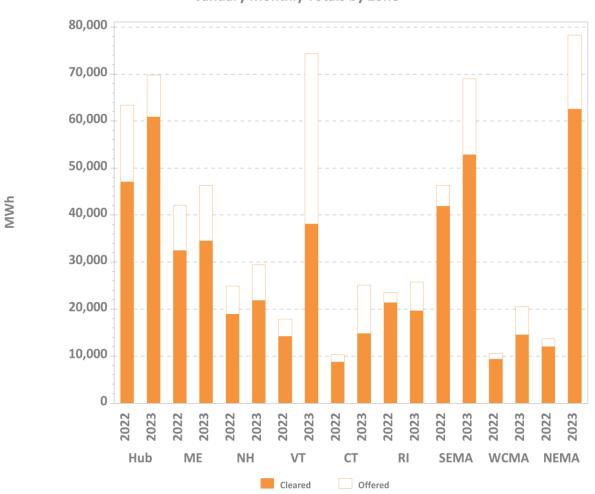
Reserve Market Results – January 2023


- Maximum potential Forward Reserve Market payments of \$3M were reduced by credit reductions of \$113K, failure-to-reserve penalties of \$169K and no failure-to-activate penalties, resulting in a net payout of \$2.8M or 91% of maximum
 - Rest of System: \$1.83M/2.1M (87%)
 - Southwest Connecticut: \$0.03M/0.03M (100%)
 - Connecticut: \$0.9M/0.91M (99%)
- \$454K total Real-Time credits were reduced by \$8K in Forward Reserve Energy Obligation Charges for a net of \$446K in Real-Time Reserve payments
 - Rest of System: 176 hours, \$327K
 - Southwest Connecticut: 176 hours, \$65K
 - Connecticut: 176 hours, \$38K
 - NEMA: 176 hours, \$16K

Note: "Failure to reserve" results in both credit reductions and penalties in the Locational Forward Reserve Market. While this summary reports performance by location, there were no locational requirements in effect for the current Forward Reserve auction period.

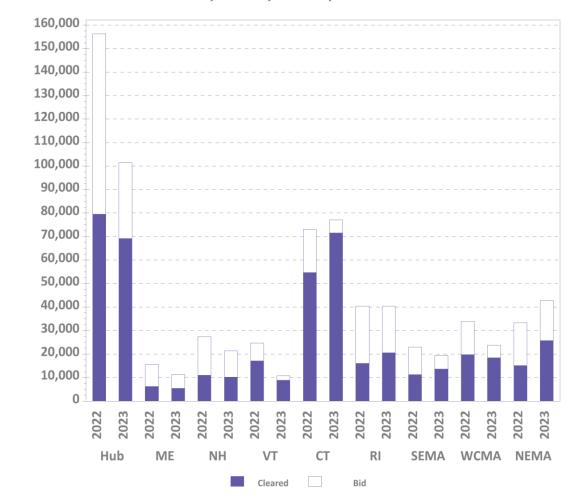
ISO-NE PUBLIC

LFRM Charges to Load by Load Zone (\$)


LFRM Charges by Zone, Last 13 Months

ISO-NE PUBLIC

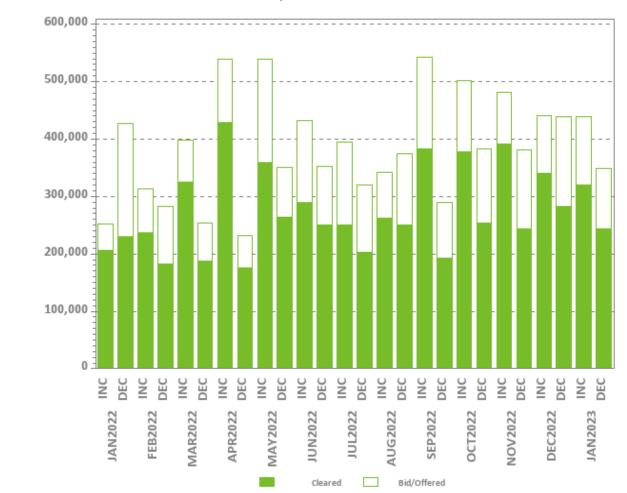
Millions


Zonal Increment Offers and Cleared Amounts

ISO-NE PUBLIC

January Monthly Totals by Zone

Zonal Decrement Bids and Cleared Amounts

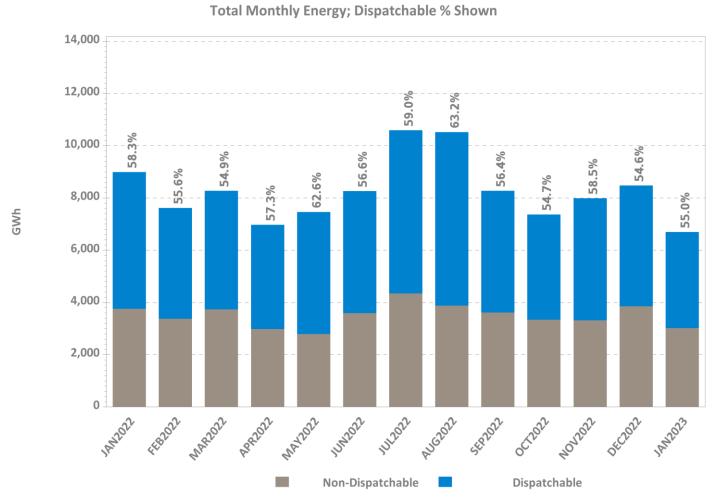

ISO-NE PUBLIC

88

January Monthly Totals by Zone

MWh

Total Increment Offers and Decrement Bids


ISO-NE PUBLIC

Zonal Level, Last 13 Months

Data excludes nodal offers and bids

MWh

Dispatchable vs. Non-Dispatchable Generation

* Dispatchable MWh here are defined to be all generation output that is not self-committed ('must run') by the customer.

ISO-NE PUBLIC

Regional System Plan (RSP)

- 2023 is an RSP publication year
- 2023-24 RSP will continue the streamlining efforts started with the 2021 RSP
- 2023-24 RSP will focus on being an overview narrative about ISO's system planning and the outlook for the New England grid
- 2023-24 RSP Public Meeting date is set for November 1 and will be held concurrently with the ISO Open Board Meeting

ISO-NE PUBLIC

Planning Advisory Committee (PAC)

- February 15 PAC Meeting Agenda Topics*
 - Asset Condition Projects
 - South Naugatuck to Devon Corridor Rebuild (Eversource)
 - Overview of Upcoming Pipe-Type Cable (PTC) Replacements Projects (Eversource)
 - 1704 & 1722 High Pressure Fluid Filled (HPFF) to Cross-linked Polyethylene (XLPE) Rebuild (Eversource)
 - 2023 Public Policy Stakeholder Presentations (as needed)
 - Vermont 2032 Needs Assessment Scope of Work Winter Peak Scenarios
 - Economic Planning for the Clean Energy Transition (EPCET) February Update

93

* Agenda topics are subject to change. Visit <u>https://www.iso-ne.com/committees/planning/planning-advisory</u> for the latest PAC agendas.

Transmission Planning for the Clean Energy Transition (TPCET)

- On 9/24/20, the ISO initiated discussions with the PAC about proposed refinements to transmission planning study assumptions that better reflect long-term trends, such as increased amounts of distributed-energy resources (primarily solar PV), offshore wind generation, and battery energy storage
- A follow-up presentation at the 11/19/20, 12/16/20, and 1/21/21 PAC meetings outlined a proposal for a pilot study, with the following goals:
 - Explore transmission reliability concerns that may result from various system conditions possible by 2030
 - Quantify trade-offs necessary between transmission system reliability/flexibility and transmission investment cost
 - Inform future discussions on transmission planning study assumptions
- Results were discussed at the 6/16/21, 7/22/21, and 8/18/21 PAC meetings
- The ISO published final revisions to the Transmission Planning Technical Guide reflecting these changes on 9/30/21
- CEII supplement to the PAC presentations was released on 10/5/21
- The final TPCET Pilot Study Report was posted to the PAC website on 1/14/22
- Status updates on ongoing transient stability modeling and performance criteria were discussed at the 4/28/22, 5/18/22, 6/15/22, and 8/24/22 PAC meetings; draft changes to the Transmission Planning Technical Guide (TPTG) reflecting assumption changes were discussed at the 11/15/22 PAC meeting; draft revisions to the TPTG were posted on 12/7/22, with feedback requested by 1/10/23
- The ISO is reviewing comments and revising the TPTG as appropriate; changes are expected to be finalized by mid-February

ISO-NE PUBLIC

2050 Transmission Study

- A meeting with the states was held on 10/15/21 to review the draft study scope
- The draft study scope was discussed with the PAC on 11/17/21
- Written stakeholder comments were due on 12/2/21
- ISO worked with NESCOE to address the comments and finalized the scope on 12/22/21
- ISO provided initial results at the 3/16/22 PAC meeting
- Sensitivity results, as well as a high-level approach to solutions development, were discussed at the 4/28/22 PAC meeting
- ISO discussed updated results and the approximate duration of overloads at the 7/20/22 PAC meeting
- ISO began initial discussions on solution development and lessons learned at the 12/13/22 PAC meeting

ISO-NE PUBLIC

95

 Consultant to perform cost estimates has been selected – Electrical Consultants Inc. (ECI)

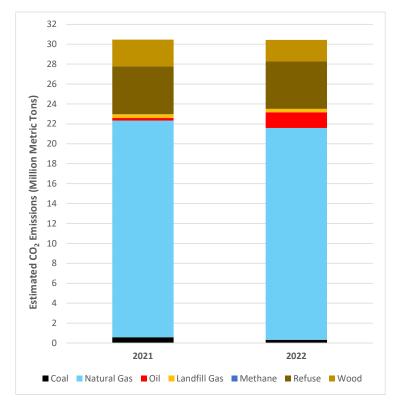
Economic Studies

- 2021 Economic Study Request
 - Also known as Future Grid Reliability Study Phase 1 (FGRS)
 - Study proponent is NEPOOL
 - Final report was posted on 7/29/22
 - Final production cost, ancillary services, and resource adequacy technical appendices were posted on 12/5/22, 12/30/22, and 1/18/23 respectively
- Economic Planning for the Clean Energy Transition Pilot Study
 - New effort is to review all assumptions in economic planning and perform a test study consistent with the proposed changes to the Tariff
 - Initial scope of work was presented at the April 2022 PAC meeting; new modeling features, initial benchmark and market efficiency scenario assumptions and results were presented at the August, October, and December 2022 PAC meetings

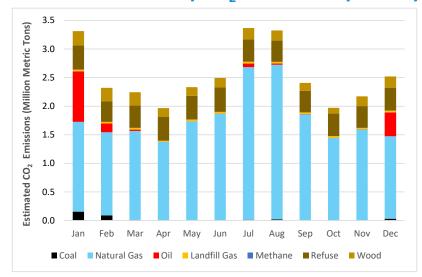
ISO-NE PUBLIC

Future Grid Reliability Study (FGRS)

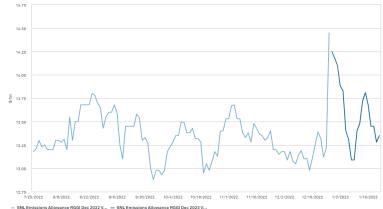
- Phase 1
 - Studies included: Production Cost Simulations; Ancillary Services Simulations; Resource Adequacy Screen; and Probabilistic Resource Availability Analysis
 - Phase 1 work was completed as the 2021 Economic Study
- Phase 2
 - In Phase 2, modeling tools and assumptions from the Pathways and FGRS Phase 1 studies will be used to solve for the set of clean-energy resources that are revenue sufficient and meet the 1-in-10 resource adequacy standard
 - Reliability attributes/capabilities of this revenue-sufficient resource mix and any potential reliability "gaps" that remain will be identified
 - High-level outline expected to be shared with stakeholders in early 2023



New England Power System Carbon Emissions


ISO-NE PUBLIC

2021 vs. 2022 New England Power System Estimated Carbon Dioxide (CO₂) Emissions


• Spike in oil-fired generation in January and December 2022

2022 Estimated Monthly CO₂ Emissions by Fuel Type

RGGI Allowance Prices

Data as of 12/31/22

RGGI – Regional Greenhouse Gas Initiative

• 1/24/23: RGGI allowance spot price - \$13.35 per allowance (1 allowance = 1 short ton CO₂)


Massachusetts CO₂ Generator Emissions Cap

ISO-NE PUBLIC

2022 Estimated Emissions Under CO₂ Cap

- 12/31/22: 2022 estimated GWSA CO₂ emissions range between 5.9 and 7.1 MMT
 - 73% to 89% of the 8.06 MMT 2022 cap
- 12/14/22 GWSA auction cleared at \$14.20; 1.18 million 2023 vintage allowances sold
 - 0.38 million 2024 vintage GWSA allowances were also offered, clearing at \$6.03

2020-2022 Estimated Monthly Emissions (Thousand Metric tons)

2022 Q4 actual data (from EPA) will be available in February

99

MMT – Million Metric Tons

GWSA – Global Warming Solutions Act

Sources: ISO-NE (estimated emissions); EPA (actual emissions)

RSP Project Stage Descriptions

Stage	Description
1	Planning and Preparation of Project Configuration
2	Pre-construction (e.g., material ordering, project scheduling)
3	Construction in Progress
4	In Service

Note: The listings in this section focus on major transmission line construction and rebuilding.

Greater Boston Projects

Status as of 1/19/2023

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1213, 1220, 1365	Install new 345 kV line from Scobie to Tewksbury	Dec-17	4
1527, 1528	Reconductor the Y-151 115 kV line from Dracut Junction to Power Street	Apr-17	4
1212, 1549	Reconductor the M-139 115 kV line from Tewksbury to Pinehurst and associated work at Tewksbury	May-17	4
1549	Reconductor the N-140 115 kV line from Tewksbury to Pinehurst and associated work at Tewksbury	May-17	4
1260	Reconductor the F-158N 115 kV line from Wakefield Junction to Maplewood and associated work at Maplewood	Dec-15	4
1550	Reconductor the F-158S 115 kV line from Maplewood to Everett	Jun-19	4
1551, 1552	Install new 345 kV cable from Woburn to Wakefield Junction, install two new 160 MVAR variable shunt reactors and associated work at Wakefield Junction and Woburn*	Dec-23	3*
1329	Refurbish X-24 69 kV line from Millbury to Northboro Road	Dec-15	4
1327	Reconductor W-23W 69 kV line from Woodside to Northboro Road	Jun-19	4

ISO-NE PUBLIC

* Substation portion of the project is a Present Stage status 4

Greater Boston Projects, cont. *Status as of 1/19/2023*

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1330	Separate X-24 and E-157W DCT	Dec-18	4
1363	Separate Q-169 and F-158N DCT	Dec-15	4
1637, 1640	Reconductor M-139/211-503 and N-140/211-504 115 kV lines from Pinehurst to North Woburn tap	May-17	4
1516	Install new 115 kV station at Sharon to segment three 115 kV lines from West Walpole to Holbrook	Sep-20	4
965	Install third 115 kV line from West Walpole to Holbrook	Sep-20	4
1558	Install new 345 kV breaker in series with the 104 breaker at Stoughton	May-16	4
1199	Install new 230/115 kV autotransformer at Sudbury and loop the 282-602 230 kV line in and out of the new 230 kV switchyard at Sudbury	Dec-17	4
1335	Install a new 115 kV line from Sudbury to Hudson	Dec-23	2

ISO-NE PUBLIC

Greater Boston Projects, cont.

Status as of 1/19/2023

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1336	Replace 345/115 kV autotransformer, 345 kV breakers, and 115 kV switchgear at Woburn	Dec-19	4
1553	Install a 345 kV breaker in series with breaker 104 at Woburn	Jun-17	4
1337	Reconfigure Waltham by relocating PARs, 282-507 line, and a breaker	Dec-17	4
1339	Upgrade 533-508 115 kV line from Lexington to Hartwell and associated work at the stations	Aug-16	4
1521	Install a new 115 kV 54 MVAR capacitor bank at Newton	Dec-16	4
1522	Install a new 115 kV 36.7 MVAR capacitor bank at Sudbury	May-17	4
1352	Install a second Mystic 345/115 kV autotransformer and reconfigure the bus	May-19	4
1353	Install a 115 kV breaker on the East bus at K Street	Jun-16	4
1354, 1738	Install 115 kV cable from Mystic to Chelsea and upgrade Chelsea 115 kV station to BPS standards	Jul-21	4
1355	Split 110-522 and 240-510 DCT from Baker Street to Needham for a portion of the way and install a 115 kV cable for the rest of the way	Mar-21	4

ISO-NE PUBLIC

Greater Boston Projects, cont.

Status as of 1/19/2023

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1356	Install a second 115 kV cable from Mystic to Woburn to create a bifurcated 211-514 line	Dec-23	3
1357	Open lines 329-510/511 and 250-516/517 at Mystic and Chatham, respectively. Operate K Street as a normally closed station.	May-19	4
1518	Upgrade Kingston to create a second normally closed 115 kV bus tie and reconfigure the 345 kV switchyard	Mar-19	4
1519	Relocate the Chelsea capacitor bank to the 128-518 termination postion	Dec-16	4

ISO-NE PUBLIC

Greater Boston Projects, cont.

Status as of 1/19/2023

Plan Benefit: Addresses long-term system needs in the Greater Boston area and improves system reliability

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1520	Upgrade North Cambridge to mitigate 115 kV 5 and 10 stuck breaker contingencies	Dec-17	4
1643	Install a 200 MVAR STATCOM at Coopers Mills	Nov-18	4
1341, 1645	Install a 115 kV 36.7 MVAR capacitor bank at Hartwell	May-17	4
1646	Install a 345 kV 160 MVAR shunt reactor at K Street	Dec-19	4
1647	Install a 115 kV breaker in series with the 5 breaker at Framingham	Mar-17	4
1554	Install a 115 kV breaker in series with the 29 breaker at K Street	Apr-17	4

ISO-NE PUBLIC

SEMA/RI Reliability Projects

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1714	Construct a new 115 kV GIS switching station (Grand Army) which includes remote terminal station work at Brayton Point and Somerset substations, and the looping in of the E-183E, F-184, X3, and W4 lines	Oct-20	4
1742	Conduct remote terminal station work at the Wampanoag and Pawtucket substations for the new Grand Army GIS switching station	Oct-20	4
1715	Install upgrades at Brayton Point substation which include a new 115 kV breaker, new 345/115 kV transformer, and upgrades to E183E, F184 station equipment	Oct-20	4
1716	Increase clearances on E-183E & F-184 lines between Brayton Point and Grand Army substations	Nov-19	4
1717	Separate the X3/W4 DCT and reconductor the X3 and W4 lines between Somerset and Grand Army substations; reconfigure Y2 and Z1 lines	Nov-19	4

SEMA/RI Reliability Projects, cont.

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1718	Add 115 kV circuit breaker at Robinson Ave substation and re-terminate the Q10 line	Mar-22	4
1719	Install 45.0 MVAR capacitor bank at Berry Street substation	Cancelled*	N/A
1720	Separate the N12/M13 DCT and reconductor the N12 and M13 between Somerset and Bell Rock substations	May-25	2
1721	Reconfigure Bell Rock to breaker-and-a-half station, split the M13 line at Bell Rock substation, and terminate 114 line at Bell Rock; install a new breaker in series with N12/D21 tie breaker, upgrade D21 line switch, and install a 37.5 MVAR capacitor	Aug-23	3
1722	Extend the Line 114 from the Dartmouth town line (Eversource-National Grid border) to Bell Rock substation	Dec-24	2
1723	Reconductor L14 and M13 lines from Bell Rock substation to Bates Tap	Cancelled*	N/A

ISO-NE PUBLIC

107

*Cancelled per ISO-NE PAC presentation on August 27, 2020

SEMA/RI Reliability Projects, cont.

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1725	Build a new 115 kV line from Bourne to West Barnstable substations which includes associated terminal work	May-24	2
1726	Separate the 135/122 DCT from West Barnstable to Barnstable substations	Dec-21	4
1727	Retire the Barnstable SPS	Nov-21	4
1728	Build a new 115 kV line from Carver to Kingston substations and add a new Carver terminal	Jun-23	3
1729	Install a new bay position at Kingston substation to accommodate new 115 kV line	Jun-23	3
1730	Extend the 114 line from the Eversource/National Grid border to the Industrial Park Tap	Dec-24	1

ISO-NE PUBLIC

SEMA/RI Reliability Projects, cont.

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1731	Install 35.3 MVAR capacitors at High Hill and Wing Lane substations	Dec-21	4
1732	Loop the 201-502 line into the Medway substation to form the 201-502N and 201-502S lines	Dec-25	3
1733	Separate the 325/344 DCT lines from West Medway to West Walpole substations	Cancelled**	N/A
1734	Reconductor and upgrade the 112 Line from the Tremont substation to the Industrial Tap	Jun-18	4
1736	Reconductor the 108 line from Bourne substation to Horse Pond Tap*	Oct-18	4
1737	Replace disconnect switches on 323 line at West Medway substation and replace 8 line structures	Aug-20	4

ISO-NE PUBLIC

109

* Does not include the reconductoring work over the Cape Cod canal

** Cancelled per ISO-NE PAC presentation on August 27, 2020

SEMA/RI Reliability Projects, cont.

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Southeast Massachusetts/Rhode Island area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1741	Rebuild the Middleborough Gas and Electric portion of the E1 line from Bridgewater to Middleborough	Apr-19	4
1782	Reconductor the J16S line	May 22	4
1724	Replace the Kent County 345/115 kV transformer	Mar-22	4
1789	West Medway 345 kV circuit breaker upgrades	Apr-21	4
1790	Medway 115 kV circuit breaker replacements	Nov-20	4

ISO-NE PUBLIC

Eastern CT Reliability Projects

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Eastern Connecticut area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1815	Reconductor the L190-4 and L190-5 line sections	Dec-24	2
1850	Install a second 345/115 kV autotransformer (4X) and one 345 kV breaker at Card substation	Dec-22	4
1851	Upgrade Card 115 kV to BPS standards	Dec-22	4
1852	Install one 115 kV circuit breaker in series with Card substation 4T	Mar-23	3
1853	Convert Gales Ferry substation from 69 kV to 115 kV	Dec-23	3
1854	Rebuild the 100 Line from Montville to Gales Ferry to allow operation at 115 kV	Jun-23	3

ISO-NE PUBLIC

Eastern CT Reliability Projects, cont.

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Eastern Connecticut area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
1855	Re-terminate the 100 Line at Montville station and associated work. Energize the 100 Line at 115 kV	Dec-23	3
1856	Rebuild 400-1 Line section to allow operation at 115 kV (Tunnel to Ledyard Jct.)	Apr-23	3
1857	Add one 115 kV circuit breaker and re-terminate the 400-1 line section into Tunnel substation. Energize 400 Line at 115 kV	Dec-23	3
1858	Rebuild 400-2 Line section to allow operation at 115 kV (Ledyard Jct. to Border Bus with CMEEC)	Sept-22	4
1859	Rebuild the 400-3 Line Section to allow operation at 115 kV (Gales Ferry to Ledyard Jct.)	Apr-23	3
1860	Install a 25.2 MVAR 115 kV capacitor and one capacitor breaker at Killingly	Dec-21	4

ISO-NE PUBLIC

Eastern CT Reliability Projects, cont.

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Eastern Connecticut area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage	
1861	Install one 345 kV series breaker with the Montville 1T	Nov-21	4	
1 1867	Install a +55/-29 MVAR synchronous condenser with two 115 kV breakers at Shunock	Dec-23	3	
1863	Install a 1% series reactor with bypass switch at Mystic, CT on the 1465 Line	Mar-22	4	
1 1864	Convert the 400-2 Line Section to 115 kV (Border Bus to Buddington)	Dec-23	3	
1 1904	Convert 69 kV equipment at Buddington to 115 kV to facilitate the conversion of the 400-2 line to 115 kV	Dec-23	3	

ISO-NE PUBLIC

Boston Area Optimized Solution Projects

Status as of 1/19/2023

Project Benefit: Addresses system needs in the Boston area

RSP Project List ID	Upgrade Expected/ In-Service				
1874	Install two 11.9 ohm series reactors at North Cambridge Station on Lines 346 and 365	Dec-21	4		
1 12/5	Install a direct transfer trip (DTT) scheme between Ward Hill and West Amesbury Substations for Line 394	Apr-22	4		
1876	Install one +/- 167 MVAR STATCOM at Tewksbury 345 kV Substation	May-23	3		

ISO-NE PUBLIC

New Hampshire Solution Projects

Status as of 1/19/2023

Project Benefit: Addresses system needs in the New Hampshire area

RSP Project List ID	Expected/UpgradeActualIn-Service				
1 1 2 / 2	Install a +55/-32.2 MVAR synchronous condenser at N. Keene 115 kV Substation with a 115 kV breaker	Dec-23	3		
1 1 2 / 4	Install a +55/-32.2 MVAR synchronous condenser at Huckins Hill 115 kV Substation with a 115 kV breaker	Dec-23	3		
	Install a +127/-50 MVAR synchronous condenser at Amherst 345 kV Substation with two 345 kV breakers	Dec-23	3		
1 1881	Install two 50 MVAR capacitors on Line 363 near Seabrook Station with three 345 kV breakers	Oct-23	2		

ISO-NE PUBLIC

Upper Maine Solution Projects

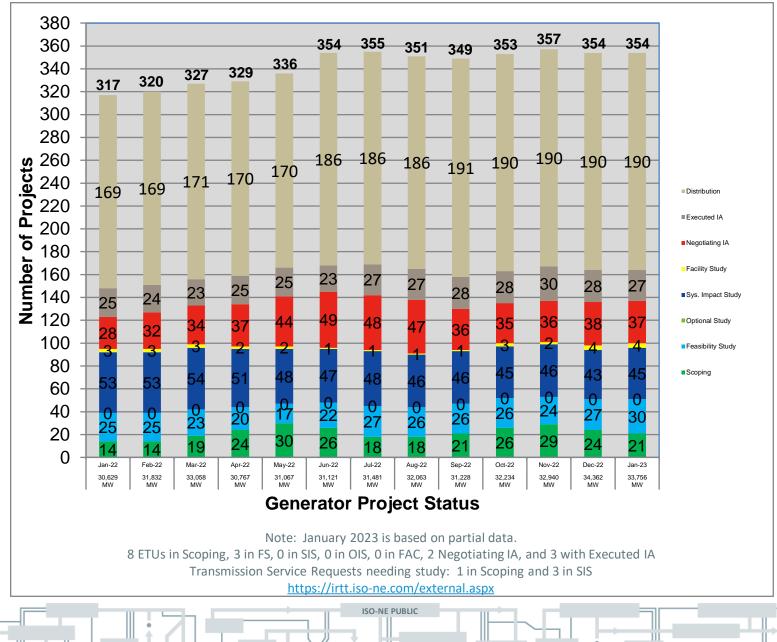
Status as of 1/19/2023

Project Benefit: Addresses system needs in the Upper Maine area

RSP Project List ID	Upgrade	Expected/ Actual In-Service	Present Stage
	Rebuild 21.7 miles of the existing 115 kV line Section 80 Highland – Coopers Mills 115 kV line	Dec-24	2
1883	Convert the Highland 115 kV substation to an eight breaker, breaker-and-a-half configuration with a bus connected 115/34.5 kV transformer	Dec-27	1
1884	Install a 15 MVAR capacitor at Belfast 115 kV substation	Dec-27	1
1 1885	Install a +50/-25 MVAR synchronous condenser at Highland 115 kV substation	Dec-27	1
1886	Install +50/-25 MVAR synchronous condenser at Boggy Brook 115 kV substation, and install a new 115 kV breaker to separate Line 67 from the proposed solution elements	Jun-24	2

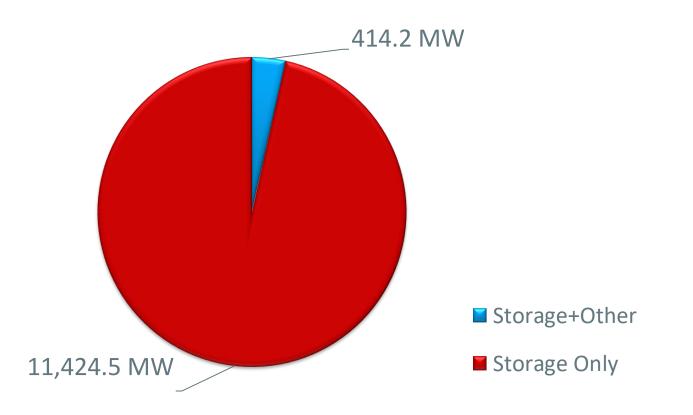
ISO-NE PUBLIC

Upper Maine Solution Projects, cont.


Status as of 1/19/2023

Project Benefit: Addresses system needs in the Upper Maine area

RSP Project List ID	Upgrade Expected/ In-Service		
1887	Install 25 MVAR reactor at Boggy Brook 115 kV substation	Jun-24	2
1888	Install 10 MVAR reactor at Keene Road 115 kV substation	Jun-24	2
1889	Install three remotely monitored and controlled switches to split the existing Orrington reactors between the two Orrington 345/115 kV autotransformers	Dec-23	2


ISO-NE PUBLIC

Status of Tariff Studies as of January 26, 2023

What is in the Queue (as of January 26, 2023)

Storage Projects are proposed as stand-alone storage or as co-located with wind or solar projects

ISO-NE PUBLIC

OPERABLE CAPACITY ANALYSIS

Winter 2023 Analysis

Winter 2023 Operable Capacity Analysis

50/50 Load Forecast (Reference)	February - 2023 ² CSO (MW)	February - 2023 ² SCC (MW)
Operable Capacity MW ¹	28,497	31,971
Active Demand Capacity Resource (+) ⁵	381	393
External Node Available Net Capacity, CSO imports minus firm capacity exports (+)	900	900
Non Commercial Capacity (+)	12	12
Non Gas-fired Planned Outage MW (-)	123	262
Gas Generator Outages MW (-)	370	472
Allowance for Unplanned Outages (-) ⁴	3,100	3,100
Generation at Risk Due to Gas Supply (-) ³	1,874	2,103
Net Capacity (NET OPCAP SUPPLY MW)	24,323	27,339
Peak Load Forecast MW(adjusted for Other Demand Resources) ²	19,496	19,496
Operating Reserve Requirement MW	2,305	2,305
Operable Capacity Required (NET LOAD OBLIGATION MW)	21,801	21,801
Operable Capacity Margin	2,522	5,538

¹Operable Capacity is based on data as of January 24, 2023 and does not include Capacity associated with Settlement Only Generators, Passive and Active Demand Response, and external capacity. The Capacity Supply Obligation (CSO) and Seasonal Claim Capability (SCC) values are based on data as of January 24, 2023.

² Load forecast that is based on the 2022 CELT report and represents the week with the lowest Operable Capacity Margin, week beginning February 11, 2023.

³ Total of (Gas at Risk MW) – (Gas Gen Outages MW).

⁴ Allowance For Unplanned Outage MW is based on the month corresponding to the day with the lowest Operable Capacity Margin for the week.

⁵ Active Demand Capacity Resources (ADCRs) can participate in the Forward Capacity Market (FCM), have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

ISO-NE PUBLIC

Winter 2023 Operable Capacity Analysis

90/10 Load Forecast	February - 2023 ² CSO (MW)	February - 2023 ² SCC (MW)
Operable Capacity MW ¹	28,497	31,971
Active Demand Capacity Resource (+) ⁵	381	393
External Node Available Net Capacity, CSO imports minus firm capacity exports (+)	900	900
Non Commercial Capacity (+)	12	12
Non Gas-fired Planned Outage MW (-)	123	262
Gas Generator Outages MW (-)	370	472
Allowance for Unplanned Outages (-) ⁴	3,100	3,100
Generation at Risk Due to Gas Supply (-) ³	2,921	3,305
Net Capacity (NET OPCAP SUPPLY MW)	23,276	26,137
Peak Load Forecast MW(adjusted for Other Demand Resources) ²	20,166	20,166
Operating Reserve Requirement MW	2,305	2,305
Operable Capacity Required (NET LOAD OBLIGATION MW)	22,471	22,471
Operable Capacity Margin	805	3,666

¹Operable Capacity is based on data as of January 24, 2023 and does not include Capacity associated with Settlement Only Generators, Passive and Active Demand Response, and external capacity. The Capacity Supply Obligation (CSO) and Seasonal Claim Capability (SCC) values are based on data as of January 24, 2023.

² Load forecast that is based on the 2022 CELT report and represents the week with the lowest Operable Capacity Margin, week beginning February 11, 2023.

³ Total of (Gas at Risk MW) – (Gas Gen Outages MW).

⁴ Allowance For Unplanned Outage MW is based on the month corresponding to the day with the lowest Operable Capacity Margin for the week.

⁵ Active Demand Capacity Resources (ADCRs) can participate in the Forward Capacity Market (FCM), have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

ISO-NE PUBLIC

Winter 2023 Operable Capacity Analysis 50/50 Forecast (Reference)

ISO-NE OPERABLE CAPACITY ANALYSIS

January 24, 2023 - 50-50 FORECAST using CSO MW

This analysis is a tabulation of weekly assessments shown in one single table. The information shows the operable capacity situation under assumed conditions for each week. It is not expected that the system peak will occur every week from February through March.

Report createu.															
					CSO Non Gas-	CSO Gas-Only		CSO Generation			Operating				
Study Week	CSO Supply	CSO Demand			Only Generator	Generator	Unplanned	at Risk Due to	CSO Net	Peak Load	Reserve	CSO Net	CSO Operable		
(Week Beginning	Resource	Resource	External Node	Non-Commercial	Planned Outages	Planned Outages	Outages	Gas Supply 50-	Available	Forecast 50-	Requirement	Required	Capacity Margin	Season Min Opcap	
, Saturday)	Capacity MW	Capacity MW	Capacity MW	Capacity MW	MW	MW	Allowance MW	50PLE MW	Capacity MW	50PLE MW	MW	Capacity MW	MW	Margin Flag	Season_Label
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2/11/2023	28497	381	900	12	123	370	3100	1874	24323	19496	2305	21801	2522	Y	Winter 2022/2023
2/18/2023	28497	381	900	12	50	370	3100	1425	24845	19236	2305	21541	3304	N	Winter 2022/2023
2/25/2023	28497	381	900	12	115	370	3100	1126	25079	18258	2305	20563	4516	N	Winter 2022/2023
3/4/2023	28251	557	1070	60	262	848	2200	349	26279	17912	2305	20217	6062	N	Winter 2022/2023
3/11/2023	28251	557	1070	60	179	1075	2200	0	26484	17718	2305	20023	6461	N	Winter 2022/2023
3/18/2023	28251	557	1070	60	1445	1729	2200	0	24564	17357	2305	19662	4902	N	Winter 2022/2023
3/25/2023	28251	557	1070	60	1407	2899	2200	0	23432	16797	2305	19102	4330	N	Winter 2022/2023
							Column	Dofinition	~						

Column Definitions

ISO-NE PUBLIC

123

1. CSO Supply Resource Capacity MW: Summation of all resource Capacity supply Obligations (CSO). Does not include Settlement Only Generators (SOG).

2. CSO Demand Resource Capacity MW: Demand resources known as Real-Time Demand Response (RTDR) will become Active Demand Capacity Resources (ADCRs) and can participate in the Forward Capacity market (FCM).

These resources will have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

3. External Node Capacity MW: Sum of external Capacity Supply Obligations (CSO) imports and exports.

4. Non-Commercial capacity MW: New resources and generator improvements that have acquired a CSO but have not become commercial.

5. CSO Non Gas-Only Generator Planned Outages MW: All Non-Gas Planned Outages is the total of Non Gas-fired Generator/DARD Outages for the period. This value would also include any known long-term Non Gas-fired Forced Outages. Outages.

6. CSO Gas-Only Generator Planned Outages MW: All Planned Gas-fired generation outage for the period. This value would also include any known long-term Gas-fired Forced Outages.

7. Unplanned Outage Allowance MW: Forced Outages and Maintenance Outages scheduled less than 14 days in advance per ISO New England Operating Procedure No. 5 Appendix A.

8. CSO Generation at Risk Due to Gas Supply Mw: Gas fired capacity expected to be at risk during cold weather conditions or gas pipeline maintenance outages.

9. CSO Net Available Capacity MW: the summation of columns (1+2+3+4-5-6-7-8=9)

10. Peak Load Forecast MW: Provided in the annual 2022 CELT Report and adjusted for Passive Demand Resources assumes Peak Load Exposure (PLE) and does include credit of Passive Demand Response (PDR) and behind-the-meter PV (BTM PV).

11. Operating Reserve Requirement MW: 120% of first largest contingency plus 50% of the second largest contingency.

12. CSO Net Required Capacity MW: (Net Load Obligation) (10+11=12)

13. CSO Operable Capacity Margin MW: CSO Net Available Capacity MW minus CSO Net Required Capacity MW (9-12=13)

14. Operable Capacity Season Label: Applicable season and year.

15. Season Minimum Operable Capacity Flag: this column indicates whether or not a week has the lowest capacity margin for its applicable season.

Winter 2023 Operable Capacity Analysis 90/10 Forecast

ISO-NE OPERABLE CAPACITY ANALYSIS

January 24, 2023 - 90/10 FORECAST using CSO MW

This analysis is a tabulation of weekly assessments shown in one single table. The information shows the operable capacity situation under assumed conditions for each week. It is not expected that the system peak will occur every week from February through March.

					CSO Non Gas-	CSO Gas-Only		CSO Generation			Operating				
Study Week	CSO Supply	CSO Demand			Only Generator	Generator	Unplanned	at Risk Due to	CSO Net	Peak Load	Reserve	CSO Net	CSO Operable		
/eek Beginning	Resource	Resource	External Node	Non-Commercial	Planned Outages	Planned Outages	Outages	Gas Supply 90-	Available	Forecast 90-	Requirement	Required	Capacity Margin	Season Min Opcap	
, Saturday)	Capacity MW	Capacity MW	Capacity MW	Capacity MW	MW	MW	Allowance MW	10PLE MW	Capacity MW	10PLE MW	MW	Capacity MW	MW	Margin Flag	Season_Label
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2/11/2023	28497	381	900	12	123	370	3100	2921	23276	20166	2305	22471	805	Y	Winter 2022/2023
2/18/2023	28497	381	900	12	50	370	3100	2323	23947	19898	2305	22203	1744	N	Winter 2022/2023
2/25/2023	28497	381	900	12	115	370	3100	1874	24331	18889	2305	21194	3137	N	Winter 2022/2023
3/4/2023	28251	557	1070	60	262	848	2200	1246	25382	18533	2305	20838	4544	N	Winter 2022/2023
3/11/2023	28251	557	1070	60	190	805	2200	691	26052	18333	2305	20638	5414	N	Winter 2022/2023
3/18/2023	28251	557	1070	60	1445	1729	2200	0	24564	17960	2305	20265	4299	N	Winter 2022/2023
3/25/2023	28251	557	1070	60	1407	2899	2200	0	23432	17383	2305	19688	3744	N	Winter 2022/2023
							Column	Definition	S						

2. CSO Demand Resource Capacity MW: Demand resources known as Real-Time Demand Response (RTDR) will become Active Demand Capacity Resources (ADCRs) and can participate in the Forward Capacity market (FCM).

These resources will have the ability to obtain a CSO and also participate in the Dav-Ahead and Real-Time Energy Markets.

3. External Node Capacity MW: Sum of external Capacity Supply Obligations (CSO) imports and exports.

4. Non-Commercial capacity MW: New resources and generator improvements that have acquired a CSO but have not become commercial.

5. CSO Non Gas-Only Generator Planned Outages MW: All Non-Gas Planned Outages is the total of Non Gas-fired Generator/DARD Outages for the period. This value would also include any known long-term Non Gas-fired Forced Outages.Outages.

6. CSO Gas-Only Generator Planned Outages MW: All Planned Gas-fired generation outage for the period. This value would also include any known long-term Gas-fired Forced Outages.

7. Unplanned Outage Allowance MW: Forced Outages and Maintenance Outages scheduled less than 14 days in advance per ISO New England Operating Procedure No. 5 Appendix A.

8. CSO Generation at Risk Due to Gas Supply Mw: Gas fired capacity expected to be at risk during cold weather conditions or gas pipeline maintenance outages.

9. CSO Net Available Capacity MW: the summation of columns (1+2+3+4-5-6-7-8=9)

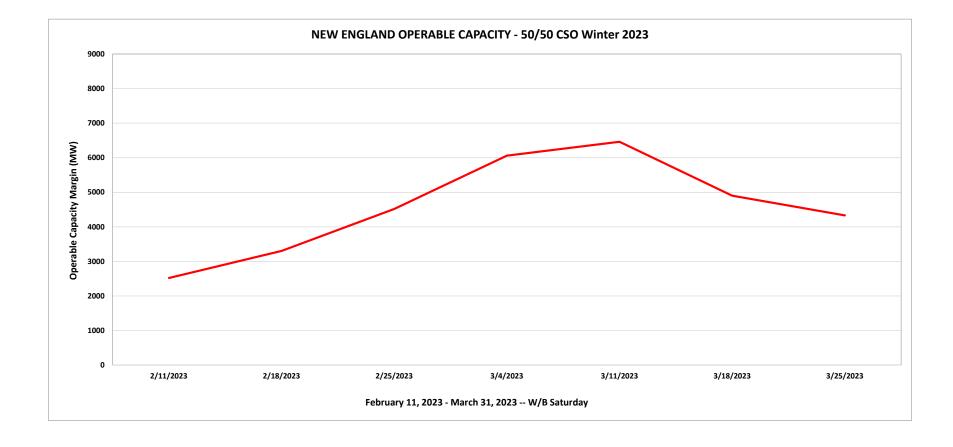
10. Peak Load Forecast MW: Provided in the annual 2022 CELT Report and adjusted for Passive Demand Resources assumes Peak Load Exposure (PLE) and does include credit of Passive Demand Response (PDR) and behind-the-meter PV (BTM PV).

ISO-NE PUBLIC

174

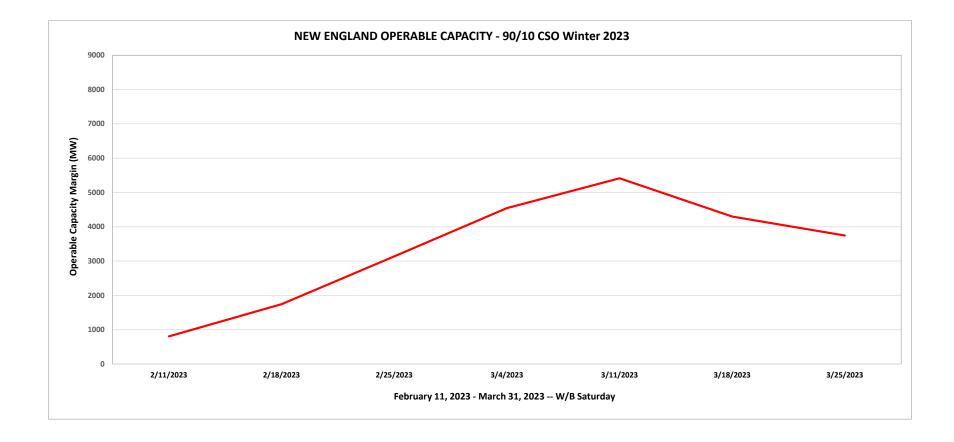
11. Operating Reserve Requirement MW: 120% of first largest contingency plus 50% of the second largest contingency.

12. CSO Net Required Capacity MW: (Net Load Obligation) (10+11=12)


13. CSO Operable Capacity Margin MW: CSO Net Available Capacity MW minus CSO Net Required Capacity MW (9-12=13)

14. Operable Capacity Season Label: Applicable season and year.

15. Season Minimum Operable Capacity Flag: this column indicates whether or not a week has the lowest capacity margin for its applicable season.


*Highlighted week is based on the week determined by the 50/50 Load Forecast Reference week

Winter 2023 Operable Capacity Analysis 50/50 Forecast (Reference)

ISO-NE PUBLIC

Winter 2023 Operable Capacity Analysis 90/10 Forecast

ISO-NE PUBLIC

OPERABLE CAPACITY ANALYSIS

Preliminary Spring 2023 Analysis

Preliminary Spring 2023 Operable Capacity Analysis

50/50 Load Forecast (Reference)	May - 2023 ² CSO (MW)	May - 2023 ² SCC (MW)
Operable Capacity MW ¹	28,170	31,971
Active Demand Capacity Resource (+) ⁵	555	393
External Node Available Net Capacity, CSO imports minus firm capacity exports (+)	1,019	1,019
Non Commercial Capacity (+)	60	60
Non Gas-fired Planned Outage MW (-)	2,545	2,947
Gas Generator Outages MW (-)	2,422	2,790
Allowance for Unplanned Outages (-) ⁴	3,400	3,400
Generation at Risk Due to Gas Supply (-) ³	0	0
Net Capacity (NET OPCAP SUPPLY MW)	21,437	24,306
Peak Load Forecast MW(adjusted for Other Demand Resources) ²	18,934	18,934
Operating Reserve Requirement MW	2,305	2,305
Operable Capacity Required (NET LOAD OBLIGATION MW)	21,239	21,239
Operable Capacity Margin	198	3,067

¹Operable Capacity is based on data as of **January 24, 2023** and does not include Capacity associated with Settlement Only Generators, Passive and Active Demand Response, and external capacity. The Capacity Supply Obligation (CSO) and Seasonal Claim Capability (SCC) values are based on data as of **January 24, 2023**.

² Load forecast that is based on the 2022 CELT report and represents the week with the lowest Operable Capacity Margin, week beginning May 13, 2023.

³ Total of (Gas at Risk MW) – (Gas Gen Outages MW).

⁴ Allowance For Unplanned Outage MW is based on the month corresponding to the day with the lowest Operable Capacity Margin for the week.

⁵ Active Demand Capacity Resources (ADCRs) can participate in the Forward Capacity Market (FCM), have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

ISO-NE PUBLIC

Preliminary Spring 2023 Operable Capacity Analysis

90/10 Load Forecast	May - 2023 ² CSO (MW)	May - 2023 ² SCC (MW)		
Operable Capacity MW ¹	28,170	31,971		
Active Demand Capacity Resource (+) ⁵	555	393		
External Node Available Net Capacity, CSO imports minus firm capacity exports (+)	1,019	1,019		
Non Commercial Capacity (+)	60	60		
Non Gas-fired Planned Outage MW (-)	2,545	2,947		
Gas Generator Outages MW (-)	2,422	2,790		
Allowance for Unplanned Outages (-) ⁴	3,400	3,400		
Generation at Risk Due to Gas Supply (-) ³	0	0		
Net Capacity (NET OPCAP SUPPLY MW)	21,437	24,306		
Peak Load Forecast MW(adjusted for Other Demand Resources) ²	20,309	20,309		
Operating Reserve Requirement MW	2,305	2,305		
Operable Capacity Required (NET LOAD OBLIGATION MW)	22,614	22,614		
Operable Capacity Margin	-1,177	1,692		

¹Operable Capacity is based on data as of January 24, 2023 and does not include Capacity associated with Settlement Only Generators, Passive and Active Demand Response, and external capacity. The Capacity Supply Obligation (CSO) and Seasonal Claim Capability (SCC) values are based on data as of January 24, 2023.

² Load forecast that is based on the 2022 CELT report and represents the week with the lowest Operable Capacity Margin, week beginning May 13, 2023.

³ Total of (Gas at Risk MW) – (Gas Gen Outages MW).

⁴ Allowance For Unplanned Outage MW is based on the month corresponding to the day with the lowest Operable Capacity Margin for the week.

⁵ Active Demand Capacity Resources (ADCRs) can participate in the Forward Capacity Market (FCM), have the ability to obtain a CSO and also participate in the Day-Ahead and Real-Time Energy Markets.

ISO-NE PUBLIC

Preliminary Spring 2023 Operable Capacity Analysis 50/50 Forecast (Reference)

ISO-NE OPERABLE CAPACITY ANALYSIS

January 24, 2023 - 50-50 FORECAST using CSO MW

This analysis is a tabulation of weekly assessments shown in one single table. The information shows the operable capacity situation under assumed conditions for each week. It is not expected that the system peak will occur every week from April through May.															
Report created: 2	1/24/2023														
					CSO Non Gas-	CSO Gas-Only		CSO Generation			Operating				
Study Week	CSO Supply	CSO Demand			Only Generator	Generator	Unplanned	at Risk Due to	CSO Net	Peak Load	Reserve	CSO Net	CSO Operable		
(Week Beginning	Resource	Resource	External Node	Non-Commercial	Planned Outages	Planned Outages	Outages	Gas Supply 50-	Available	Forecast 50-	Requirement	Required	Capacity Margin	Season Min Opcap	
, Saturday)	Capacity MW	Capacity MW	Capacity MW	Capacity MW	MW	MW	Allowance MW	50PLE MW	Capacity MW	50PLE MW	MW	Capacity MW	MW	Margin Flag	Season_Label
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
4/1/2023	28170	555	1070	60	4444	2978	2700	0	19733	16176	2305	18481	1252	N	Spring 2023
4/8/2023	28170	555	1070	60	4554	2635	2700	0	19966	15927	2305	18232	1734	N	Spring 2023
4/15/2023	28170	555	1070	60	4391	3698	2700	0	19066	15423	2305	17728	1338	N	Spring 2023
4/22/2023	28170	555	1070	60	4077	2800	2700	0	20278	15160	2305	17465	2813	N	Spring 2023
4/29/2023	28170	555	1070	60	4424	2581	3400	0	19450	15134	2305	17439	2011	N	Spring 2023
5/6/2023	28170	555	1070	60	3188	2728	3400	0	20539	17956	2305	20261	278	N	Spring 2023
5/13/2023	28170	555	1019	60	2545	2422	3400	0	21437	18934	2305	21239	198	Y	Spring 2023
5/20/2023	28170	555	1070	60	926	1377	3400	0	24152	19842	2305	22147	2005	N	Spring 2023
							Column	Definition	S						
1. CSO Supply Res	source Capacity N	W: Summation of	all resource Capaci	ty supply Obligation	is (CSO). Does not	nclude Settlement	Only Generators (S	OG).							
2. CSO Demand R	esource Capacity	MW: Demand reso	urces known as Re	al-Time Demand Re	esponse (RTDR) will	become Active Der	mand Capacity Res	ources (ADCRs) and	d can participate in	the Forward Capaci	ty market (FCM).				
These resources wi	I have the ability to	obtain a CSO and	also particpate in th	ne Day-Ahead and F	Real-Time Energy M	arkets.									
3. External Node 0	Capacity MW: Sun	n of external Capaci	ty Supply Obligatio	ns (CSO) imports a	nd exports.										
4. Non-Commercia	al capacity MW: N	ew resources and g	enerator improvement	ents that have acqui	ired a CSO but have	not become comm	ercial.								
5. CSO Non Gas-O	nly Generator Pla	inned Outages MV	V: All Non-Gas Pla	nned Outages is the	e total of Non Gas-fi	ed Generator/DAR	Outages for the pe	eriod. This value wou	Ild also include any	known long-term N	on Gas-fired Forced	d Outages.Outages			
6. CSO Gas-Only C	Senerator Planne	d Outages MW: All	I Planned Gas-fired	generation outage f	or the period. This v	alue would also incl	ude any known long	g-term Gas-fired For	ced Outages.						
7. Unplanned Outa	age Allowance M	N: Forced Outages	and Maintenance (Outages scheduled	less than 14 days ir	advance per ISO N	lew England Operat	ting Procedure No. 5	5 Appendix A.						
8. CSO Generation	n at Risk Due to G	as Supply Mw: Ga	as fired capacity exp	pected to be at risk	during cold weather	conditions or gas p	ipeline maintenanc	e outages.							
9. CSO Net Availa															
10. Peak Load For	ecast MW: Provide	ed in the annual 202	2 CELT Report and	adjusted for Passiv	e Demand Resourc	es assumes Peak l	oad Exposure (PL	E) and does include	credit of Passive D	emand Response (F	DR) and behind-the	e-meter PV (BTM P	۷V).		
11. Operating Reserve Requirement MW: 120% of first largest contingency plus 50% of the second largest contingency.															

ISO-NE PUBLIC

130

12. CSO Net Required Capacity MW: (Net Load Obligation) (10+11=12)

13. CSO Operable Capacity Margin MW: CSO Net Available Capacity MW minus CSO Net Required Capacity MW (9-12=13)

14. Operable Capacity Season Label: Applicable season and year.

15. Season Minimum Operable Capacity Flag: this column indicates whether or not a week has the lowest capacity margin for its applicable season.

Preliminary Spring 2023 Operable Capacity Analysis 90/10 Forecast

ISO-NE OPERABLE CAPACITY ANALYSIS January 24, 2023 - 90/10 FORECAST using CSO MW

This analysis is a tabulation of weekly assessments shown in one single table. The information shows the operable capacity situation under assumed conditions for each week. It is not expected that the system peak will occur every week from April through May.

Report created:	Report created: 1/24/2023														
					CSO Non Gas-	CSO Gas-Only		CSO Generation			Operating				
Study Week	CSO Supply	CSO Demand			Only Generator	Generator	Unplanned	at Risk Due to	CSO Net	Peak Load	Reserve	CSO Net	CSO Operable		
(Week Beginning	Resource	Resource	External Node	Non-Commercial	Planned Outages	Planned Outages	Outages	Gas Supply 90-	Available	Forecast 90-	Requirement	Required	Capacity Margin	Season Min Opcap	
, Saturday)	Capacity MW	Capacity MW	Capacity MW	Capacity MW	MW	MW	Allowance MW	10PLE MW	Capacity MW	10PLE MW	MW	Capacity MW	MW	Margin Flag	Season_Label
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
4/1/2023	28170	555	1070	60	4444	2978	2700	0	19733	16747	2305	19052	681	N	Spring 2023
4/8/2023	28170	555	1070	60	4554	2635	2700	0	19966	16490	2305	18795	1171	N	Spring 2023
4/15/2023	28170	555	1070	60	4391	3698	2700	0	19066	15970	2305	18275	791	N	Spring 2023
4/22/2023	28170	555	1070	60	4077	2800	2700	0	20278	15700	2305	18005	2273	N	Spring 2023
4/29/2023	28170	555	1070	60	4424	2581	3400	0	19450	15672	2305	17977	1473	N	Spring 2023
5/6/2023	28170	555	1070	60	3188	2728	3400	0	20539	19270	2305	21575	-1036	N	Spring 2023
5/13/2023	28170	555	1019	60	2545	2422	3400	0	21437	20309	2305	22614	-1177	Y	Spring 2023
5/20/2023	28170	555	1070	60	926	1377	3400	0	24152	21274	2305	23579	573	N	Spring 2023
							A . I	Definite a	-						

Column Definitions

1. CSO Supply Resource Capacity MW: Summation of all resource Capacity supply Obligations (CSO). Does not include Settlement Only Generators (SOG).

2. CSO Demand Resource Capacity MW: Demand resources known as Real-Time Demand Response (RTDR) will become Active Demand Capacity Resources (ADCRs) and can participate in the Forward Capacity market (FCM).

These resources will have the ability to obtain a CSO and also particpate in the Day-Ahead and Real-Time Energy Markets.

3. External Node Capacity MW: Sum of external Capacity Supply Obligations (CSO) imports and exports.

4. Non-Commercial capacity MW: New resources and generator improvements that have acquired a CSO but have not become commercial.

5. CSO Non Gas-Only Generator Planned Outages MW: All Non-Gas Planned Outages is the total of Non Gas-fired Generator/DARD Outages for the period. This value would also include any known long-term Non Gas-fired Forced Outages.Outages.

6. CSO Gas-Only Generator Planned Outages MW: All Planned Gas-fired generation outage for the period. This value would also include any known long-term Gas-fired Forced Outages.

7. Unplanned Outage Allowance MW: Forced Outages and Maintenance Outages scheduled less than 14 days in advance per ISO New England Operating Procedure No. 5 Appendix A.

8. CSO Generation at Risk Due to Gas Supply Mw: Gas fired capacity expected to be at risk during cold weather conditions or gas pipeline maintenance outages.

9. CSO Net Available Capacity MW: the summation of columns (1+2+3+4-5-6-7-8=9)

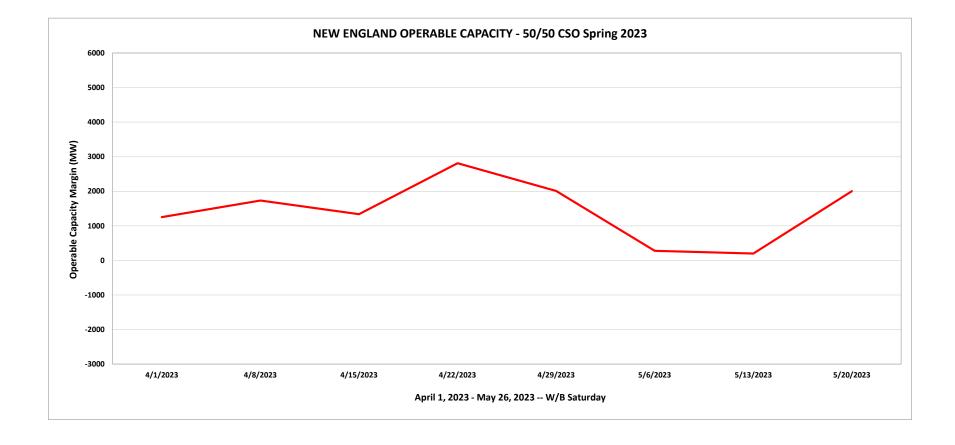
10. Peak Load Forecast MW: Provided in the annual 2022 CELT Report and adjusted for Passive Demand Resources assumes Peak Load Exposure (PLE) and does include credit of Passive Demand Response (PDR) and behind-the-meter PV (BTM PV).

ISO-NE PUBLIC

131

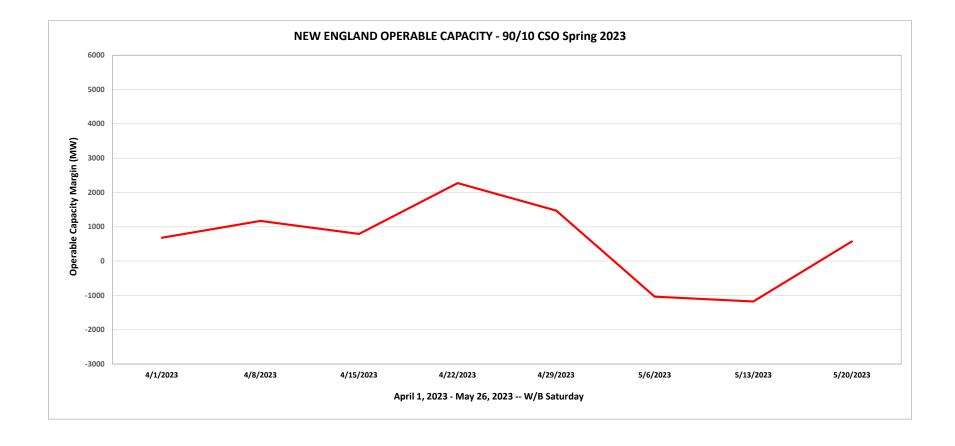
11. Operating Reserve Requirement MW: 120% of first largest contingency plus 50% of the second largest contingency.

12. CSO Net Required Capacity MW: (Net Load Obligation) (10+11=12)


13. CSO Operable Capacity Margin MW: CSO Net Available Capacity MW minus CSO Net Required Capacity MW (9-12=13)

14. Operable Capacity Season Label: Applicable season and year.

15. Season Minimum Operable Capacity Flag: this column indicates whether or not a week has the lowest capacity margin for its applicable season.


*Highlighted week is based on the week determined by the 50/50 Load Forecast Reference week

Preliminary Spring 2023 Operable Capacity Analysis 50/50 Forecast (Reference)

ISO-NE PUBLIC

Preliminary Spring 2023 Operable Capacity Analysis 90/10 Forecast

ISO-NE PUBLIC

OPERABLE CAPACITY ANALYSIS

Appendix

Possible Relief Under OP4: Appendix A

OP 4 Action Number	Page 1 of 2 Action Description	Amount Assumed Obtainable Under OP 4 (MW)
1	Implement Power Caution and advise Resources with a CSO to prepare to provide capacity and notify "Settlement Only" generators with a CSO to monitor reserve pricing to meet those obligations.	0 1
	Begin to allow the depletion of 30-minute reserve.	600
2	Declare Energy Emergency Alert (EEA) Level 1 ⁴	0
3	Voluntary Load Curtailment of Market Participants' facilities.	40 ²
4	Implement Power Watch	0
5	Schedule Emergency Energy Transactions and arrange to purchase Control Area-to- Control Area Emergency	1,000
6	Voltage Reduction requiring > 10 minutes	125 ³

NOTES:

1. Based on Summer Ratings. Assumes 25% of total MW Settlement Only units <5 MW will be available and respond.

2. The actual load relief obtained is highly dependent on circumstances surrounding the appeals, including timing and the amount of advanced notice that can be given.

135

ISO-NE PUBLIC

3. The MW values are based on a 25,000 MW system load and verified by the most recent voltage reduction test.

4. EEA Levels are described in Attachment 1 to NERC Reliability Standard EOP-011 - Emergency Operations

Possible Relief Under OP4: Appendix A

OP 4 Action Number	Page 2 of 2 Action Description	Amount Assumed Obtainable Under OP 4 (MW)
7	Request generating resources not subject to a Capacity Supply Obligation to voluntary provide energy for reliability purposes	0
8	5% Voltage Reduction requiring 10 minutes or less	250 ³
9	Transmission Customer Generation Not Contractually Available to Market Participants during a Capacity Deficiency.	5
	Voluntary Load Curtailment by Large Industrial and Commercial Customers.	200 ²
10	Radio and TV Appeals for Voluntary Load Curtailment Implement Power Warning	200 ²
11	Request State Governors to Reinforce Power Warning Appeals.	100 ²
Total		2,520

NOTES:

1. Based on Summer Ratings. Assumes 25% of total MW Settlement Only units <5 MW will be available and respond.

2. The actual load relief obtained is highly dependent on circumstances surrounding the appeals, including timing and the amount of advanced notice that can be given.

ISO-NE PUBLIC

136

3. The MW values are based on a 25,000 MW system load and verified by the most recent voltage reduction test.

4. EEA Levels are described in Attachment 1 to NERC Reliability Standard EOP-011 - Emergency Operations