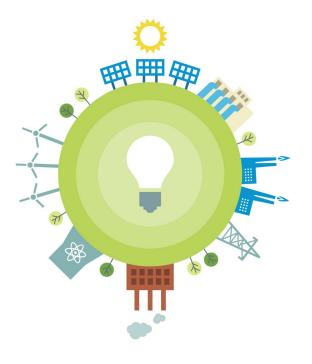
APRIL 28, 2023

Electronic ISO new england


Final 2023 Heating Electrification Forecast

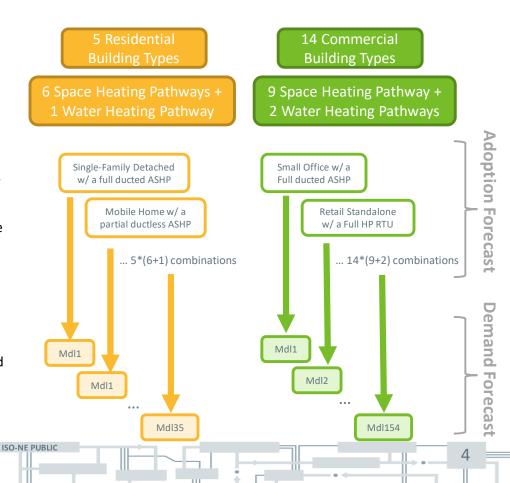
ISO-NE PUBLIC

Outline

- Introduction ٠
- **Building Stock Characterization** ٠
- **Heating Pathways** •
- **Adoption Forecasting** •
- **Demand Modeling** ٠
- Final 2023 Energy Forecast .
- Final 2023 Demand Forecast •
- Appendices State Adoption Plots
 - Appendix I: Residential Space Heating Appendix II: Commercial Space Heating
 - _
 - Appendix III: Residential Water Heating
 - Appendix IV: Commercial Water Heating

ISO-NE PUBLIC

Introduction


- Heating electrification is expected to play a pivotal role in the achievement of New England state greenhouse gas (GHG) reduction mandates and long-term decarbonization goals
- Forecasted impacts of heating electrification on state and regional electric energy and demand are included as part of the 2023 Capacity, Energy, Loads, and Transmission (CELT) forecast
- The ISO's heating electrification forecast seeks to forecast the energy and demand impacts associated with the adoption of various forms of heat pumps to electrify the following:
 - Residential space and water heating
 - Commercial space and water heating

Heating Electrification Forecast

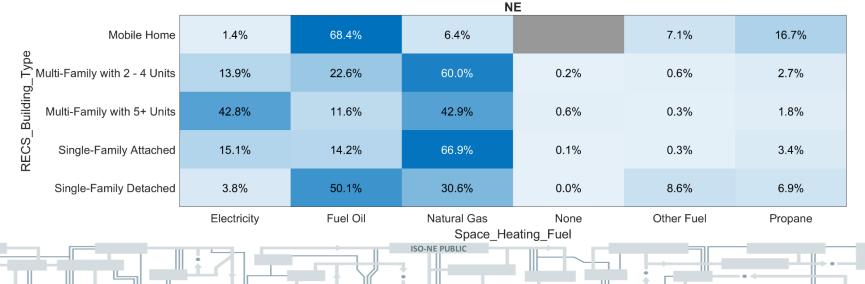
New Methodology for CELT 2023

New methodology leverages the National Renewable Energy Laboratory's <u>ResStock</u> and <u>ComStock</u> datasets, and is based on four sequential tasks

- 1. New England <u>building stock characterization</u>
 - Comprehensive characterization of the existing New England building stock
- 2. Development of "heating pathways"
 - Heating pathways specify a technology that could be used to either partially or fully electrify a given building's space or water heating needs
- 3. Adoption forecasting
 - Level of adoption of technologies along specified pathways for a variety of building types in the residential and commercial sectors
- 4. Hourly demand modeling
 - Captures the electric impacts of each adoption pathway for each building type in the residential and commercial sectors

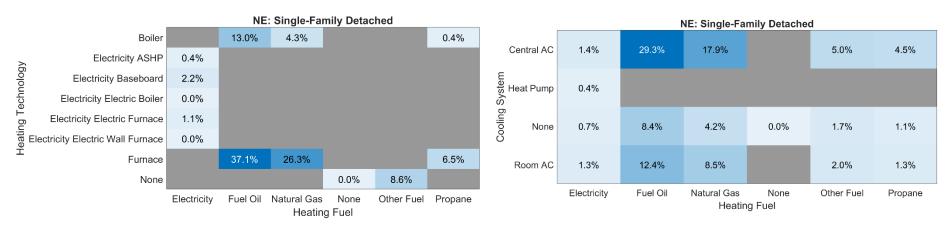
BUILDING STOCK CHARACTERIZATION

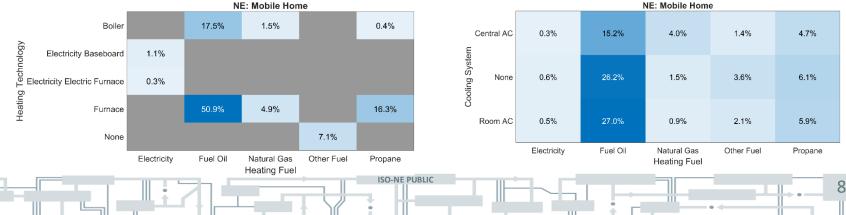
Building Stock Characterization


- Establishes a comprehensive picture of 2018 New England building stock
 - Building sector/types/uses
 - Building age
 - Heating fuel
 - Heating delivery system
 - Cooling delivery system
 - Location (state/county)
- Aggregation
 - Residential buildings are quantified in households
 - Commercial buildings are quantified in square-feet

- Based on NREL <u>ResStock</u> and <u>ComStock</u> datasets, which utilizes a wide variety of data sources, surveys, studies, and reports including:
 - EIA Residential Energy Consumption Survey (RECS)
 - EIA Commercial Building Energy Consumption Survey (CBECS)
 - American Community Survey (ACS)
 Public Use Microdata Sample (PUMS)
 - American Housing Survey (AHS)
 - DOE Commercial Prototype Buildings
 - Many other studies and reports along with commercially purchased and proprietary end-use data

Residential Buildings


State	Building Type	% of Households
NE	Single-Family Detached	58%
NE	Multi-Family with 2 - 4 Units	17%
NE	Multi-Family with 5+ Units	17%
NE	Single-Family Attached	5%
NE	Mobile Home	3%


Sum across each row = 100%

Residential Buildings

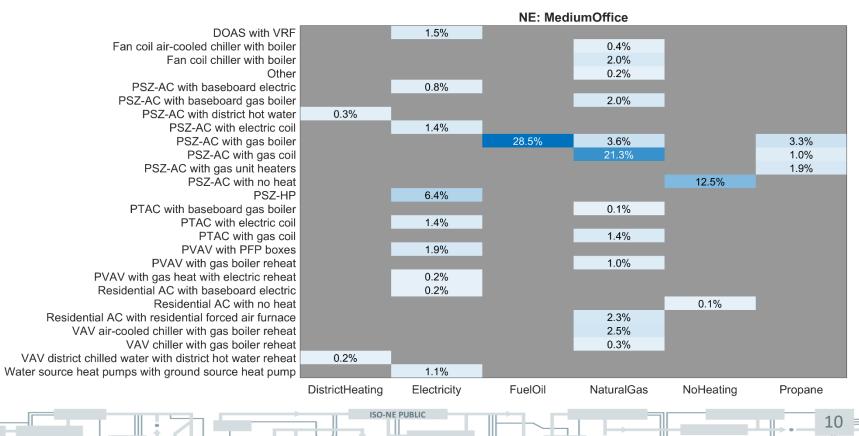
Examples of Space Conditioning Fuel Sources & Delivery Systems in New England

Commercial Buildings

State	Building Type	% Square Ft.
NE	Warehouse	31.1
NE	Industrial_Warehouse*	12.1
NE	MediumOffice	6.7
NE	SmallOffice	6.5
NE	RetailStripmall	6.3
NE	LargeOffice	5.6
NE	RetailStandalone	5.5
NE	SecondarySchool	5.2
NE	PrimarySchool	5.0
NE	Hospital	4.8
NE	SmallHotel	3.3
NE	Outpatient	3.0
NE	FullServiceRestaurant	1.8
NE	LargeHotel	1.7
NE	Industrial_MediumOffice*	1.3
NE	QuickServiceRestaurant	0.2

			Jui	n ucross eut		070	
				N	E		
FullService	Restaurant	1.8%	15.6%	26.9%	33.7%	13.7%	8.3%
	Hospital		7.2%	33.1%	29.0%	20.6%	10.0%
Industrial Me	ediumOffice	0.7%	14.3%	31.6%	33.0%	12.8%	7.6%
Industrial	Warehouse	2.7%	14.0%	30.1%	31.4%	12.2%	9.5%
	LargeHotel	3.2%	19.2%	18.2%	38.8%	13.5%	7.1%
I	LargeOffice	4.1%	2.9%	28.2%	45.3%	14.6%	4.8%
∯ Me	ediumOffice	0.5%	14.9%	28.5%	37.3%	12.6%	6.2%
ed Me	Outpatient	1.2%	17.6%	20.3%	41.5%	14.5%	4.9%
<u>up</u> Prir	marySchool	2.0%	14.2%	32.4%	27.9%	13.9%	9.7%
⊡ ☐ QuickService	Restaurant	3.4%	9.4%	34.7%	30.5%	11.6%	10.4%
Retail	Standalone	1.8%	14.9%	31.5%	30.3%	12.8%	8.8%
Ret	tailStripmall	2.3%	14.5%	30.2%	33.2%	11.7%	8.2%
Secon	darySchool	2.7%	15.6%	30.0%	28.3%	15.0%	8.5%
	SmallHotel	1.3%	14.9%	31.6%	28.7%	14.4%	9.1%
:	SmallOffice	1.9%	14.0%	33.2%	29.2%	12.7%	8.9%
,	Warehouse	2.7%	14.3%	28.6%	34.0%	12.5%	7.8%
ng types		DistrictHeating	Electricity	FuelOil Heatin	NaturalGas g_Fuel	NoHeating	Propane

Sum across each row = 100%


9

* Categories represent conditioned portions of industrial building types

ISO-NE PUBLIC

Commercial Buildings

Baseline HVAC Systems in New England, Medium Office Example

HEATING PATHWAYS

ISO-NE PUBLIC

Residential Space Heating

 CELT 2022 included only two residential space heating pathways, partial displacement ASHPs and full displacement ASHPs

Residential Space Heating Pathways

Heating Type	Technology Type	Heating Displacement
	Ducted ASHP - Full	Full
	Ducted ASHP - Partial	Partial
c	Ductless ASHP - Full	Full
Space Heating	Ductless ASHP - Partial	Partial
Treating	Ground Source Heat Pump	Full
	Air to Water Heat Pump	Full
	Packaged Terminal Heat Pump	Partial

ASHP = Air Source Heat Pump

ISO-NE PUBLIC

Commercial Space Heating

 Electrification of commercial space heating was not included in CELT 2022 and is new this year

Commercial Space Heating Pathways

Heating Type	Technology Type	Heating Displacement
	District Heating via Geothermal Heat Pump	Full
	Dual Fuel Heat Pump RTU	Partial
	Heat Pump RTU	Full/Partial
Space	VRF system (air-source)	Full
Heating	Air-to-Water Heat Pump	Full
	Ducted Air Source Heat Pump	Full
	Ducted Air Source Heat Pump	Partial
	Ductless Air Source Heat Pump	Full
	Ductless Air Source Heat Pump	Partial

RTU = Rooftop Unit; VRF = Variable Refrigerant Flow

ISO-NE PUBLIC

Residential Water Heating

 Electrification of residential water heating was not included in CELT 2022 and is new this year

Residential Water Heating Pathways

Heating	Technology	Heating
Type	Type	Displacement
Water Heating	Heat Pump Water Heater	

ISO-NE PUBLIC

Commercial Water Heating

 Electrification of commercial water heating was not included in CELT 2022 and is new this year

Commercial Water Heating Pathways

Heating Type	Technology Type	Heating Displacement
Water Heating	Heat Pump Water Heater	Full
	Heat Pump Water Heater with Booster	Partial

ADOPTION FORECASTING

Modeling and Results

Adoption Modeling

- Adoption methodology considers potential pathways to space and water heating electrification based on existing building stock characteristics as well as state policy and economic considerations including:
 - Building type and sector
 - Existing heating fuels
 - Existing heating and cooling delivery systems (e.g. ducted, non-ducted)
 - Payback period for heating technology conversion
 - Level of state policy support, incentives, and goals regarding heating electrification
- Pathway adoption modeling is performed at the state level for both the residential and commercial sectors

Adoption Modeling Methodology

Framework

- Adoption along each pathway is based on a Bass diffusion model with input parameters guided by the following quantities:
 - Return on Investment (ROI)
 - Favorable ROI can drive full adoption, while any electrification technology pathway with low or negative ROI will only capture a small percentage of the maximum adoption
 - Policy indicator
 - State-level policy can significantly influence how quickly a given electrification technology will transition from innovators to mass adoption
 - This is a qualitative parameter ranging from 1 to 5, with 5 being the most aggressive level of policy supporting the adoption of electrified heating technologies
 - Barrier indicator
 - Reflects technical barrier to adoption separate from any financial barriers
 - Is defined for each pathway and held steady over the forecast horizon
 - This is a qualitative parameter ranging from 1 to 5, with 5 representing the greatest barrier to adoption

18

- Current levels of technology saturation
- Uncertainty in the evolution of ROI and policy impacts over the forecast horizon is reflected via a Monte Carlo simulation

ISO-NE PUBL

Adoption Modeling Methodology

Market Segmentation

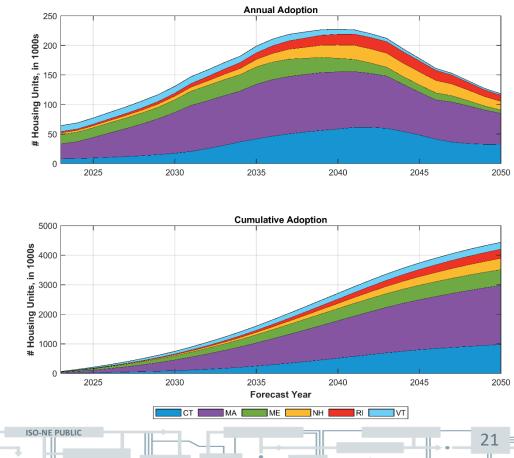
- Existing building electrification market is segmented into two different avenues of participation, each reflecting differing economic and market size assumptions
 - Market driven
 - Customer's previous heating system is at or near the point of failure and needs to be replaced
 - ROI is higher since the cost is determined by the incremental difference between the heat pump and the replacement cost of the existing system.

- Retrofit
 - Customer electrifies despite fully functioning existing HVAC systems
 - Market size is the total number of existing homes and businesses, and the incremental cost of electrification is determined by the full cost of the heat pump
- Interactive effects between retrofit and market-driven adoption are also considered
 - Market-driven measures reduce the available market for retrofits
 - Retrofits reduce the amount of new electrification available for market-driven once the existing
 equipment would have failed and needed replacement
- Adoption of "niche" pathways (ground source heat pumps and air-to-water systems), which does not easily fit into the adoption modeling framework outlined above, is established by converting a small, fixed percentage of other pathways
 - Important for these to be included in the demand modeling

Residential Space Heating

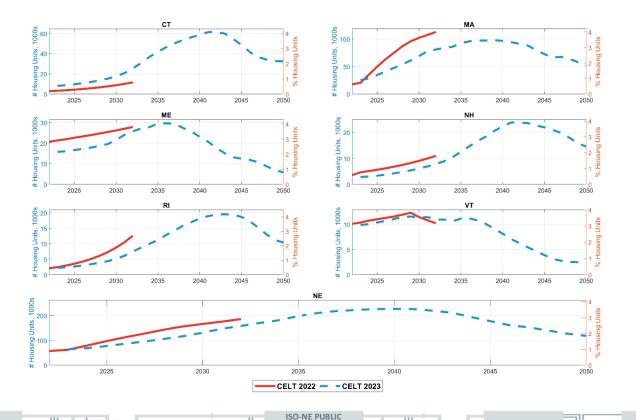
Existing Fuel Sources

- Adoption modeling focuses exclusively on legacy fossil fueled space heating:
 - Fuel Oil
 - Propane
 - Natural Gas

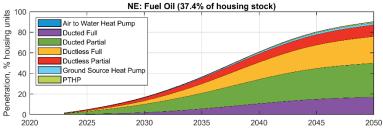

	Starting Share of Housing Units, %									
Electricity	16.5	14.9	5.7	8.3	9.9	5.8	12.8			
Fuel Oil	41.9	26.7	64.3	45.5	31.4	43.5	37.4			
	35.4	53.3	6.2	19	55	17.7	38.9			
Natural Gas Heating None None	0	0.2	0.1	0.5	0	0	0.1			
ග් Other Fuel	2.8	2.2	15.3	10.3	2.1	18	5.4			
Propane	3.4	2.7	8.4	16.4	1.6	15.1	5.4			
	СТ	MA	ME	NH	RI	VT	NE			

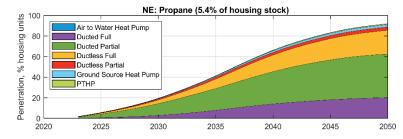
20

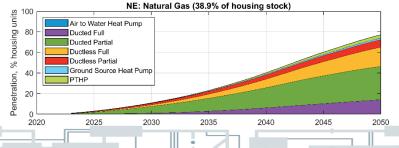
ISO-NE PUBLIC

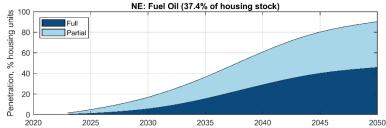

Residential Space Heating Adoption

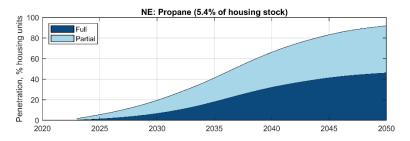
- Adoption forecast for residential space heating (full + partial) is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes more than 4.4 million housing units with electrified space heating electrified by 2050
 - ~69% of total housing stock
 - ~84% of fossil fueled heating
- The regional forecast penetration of electrified residential space heating according to legacy heating fuels is shown on the next slide, including a breakdown of full versus partial heating
 - Similar graphics for state forecast penetrations are included in <u>Appendix</u>

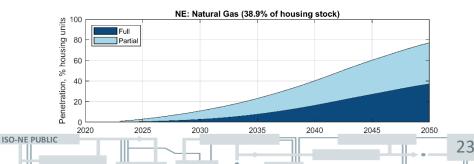



Residential Space Heating Adoption


CELT 2023 versus CELT 2022 Adoption Forecast



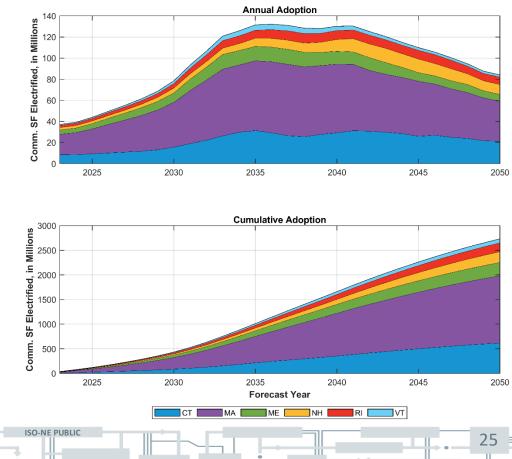

Adoption By Legacy Residential Space Heating Fuel New England



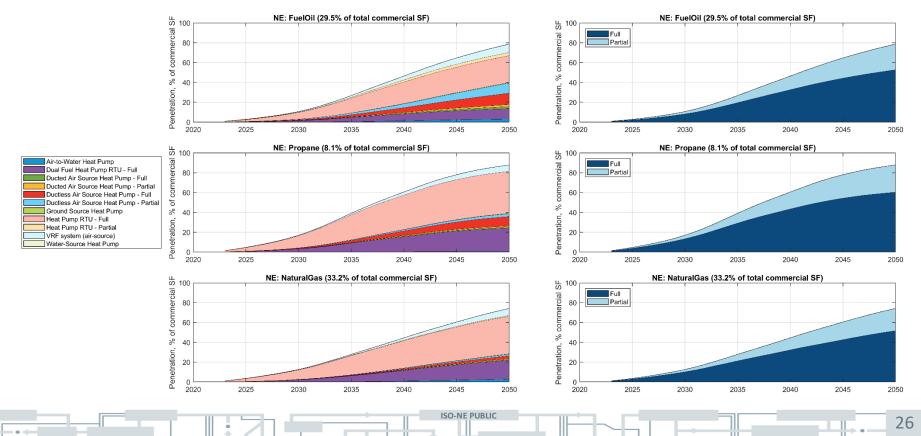
Commercial Space Heating

Legacy Fuel Sources

- Adoption modeling focuses exclusively on legacy fossil fueled space heating:
 - Fuel Oil
 - Propane
 - Natural Gas


	Starting Share of Commercial SF, %							
۵	DistrictHeating	2.3	2.2	1.4	3.5	2.2	1.9	2.2
lər	Electricity	17.7	13	10.8	11.9	10.2	8.3	13.6
ating Fu	FuelOil	33.6	22.5	57.1	34.4	21.5	33.4	29.5
Space Heating Fuel	NaturalGas	26.6	43.6	2.7	15.6	50.5	19.6	33.2
	NoHeating	12.8	14.4	11.6	12.5	12.4	8.8	13.3
	Propane	7	4.2	16.3	22.1	3.3	28.1	8.1
		СТ	MA	ME	NH	RI	VT	NE

24


ISO-NE PUBLIC

Commercial Space Heating Adoption

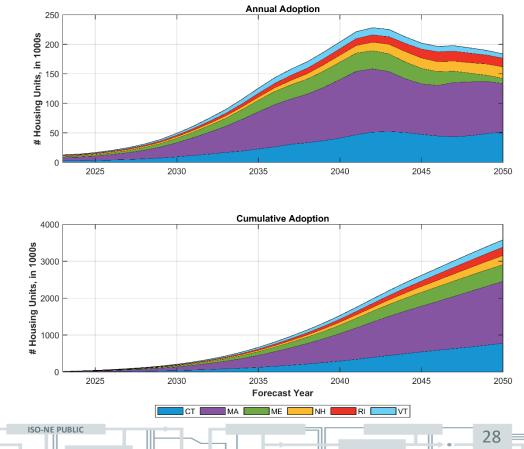
- Adoption forecast for commercial space heating (full + partial) is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes more than 2.7 billion square feet of commercial space heating electrified by 2050
- The regional forecast penetration of electrified commercial space heating according to legacy heating fuels is shown on the next slide, including a breakdown of full versus partial heating
 - Similar graphics for state forecast penetrations are included in <u>Appendix II</u>

Adoption By Legacy Commercial Space Heating Fuel New England

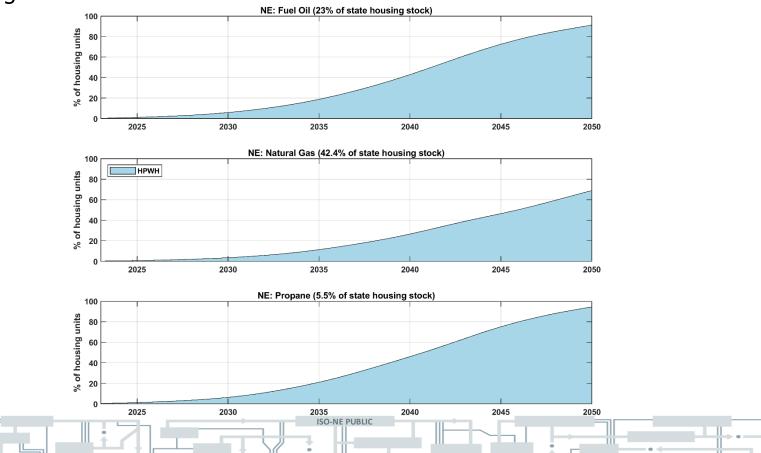
Residential Water Heating

Legacy Fuel Sources

- Adoption modeling focuses ٠ exclusively on legacy fossil fueled water heating:
 - Fuel Oil _
 - Propane _
 - Natural Gas _


		Sta	arting Sha	re of Hous	sing Units,	, %	
Electricity	30.6	25.5	35.7	33.9	23.4	33.2	28.9
Fuel Oil	25.5	17	38.9	26.6	18.6	27.8	23
Natural Gas Heatting Other Fuel	40.3	54.1	15.9	25.5	55.7	23.2	42.4
other Fuel	0	0.1	0.5	0.1	0.1	0.5	0.2
Propane	3.6	3.3	8.9	13.9	2.3	15.3	5.5
	СТ	MA	ME	NH	RI	VT	NE

ISO-NE PUBLIC


Starting Chara of Housing Unite 0/

Residential Water Heating Adoption

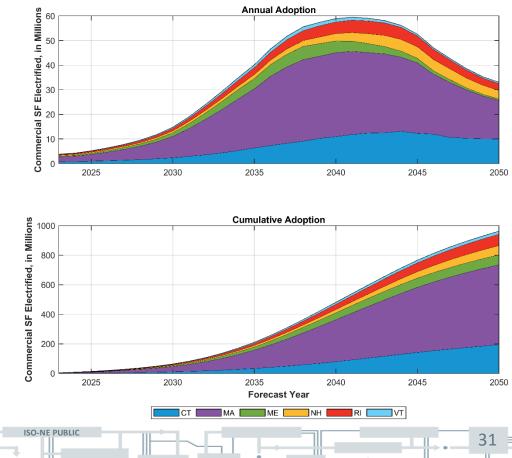
- Adoption forecast for residential HPWHs is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes almost 3.6 million homes with electrified water heating by 2050
 - ~55% of total housing stock
 - ~78% of fossil fueled heating
- Regional forecast penetration of HPWHs according to legacy water heating fuels is shown on the next slide
 - Similar graphics for state forecast penetrations are included in <u>Appendix III</u>

Adoption By Legacy Residential Water Heating Fuel New England

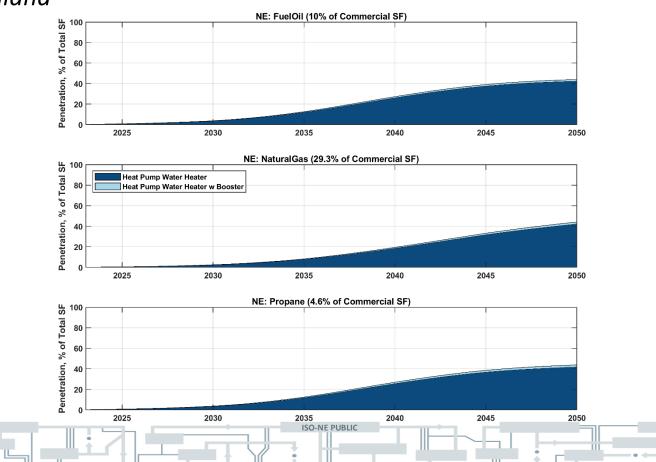
Commercial Water Heating

Legacy Fuel Sources

- Adoption modeling focuses exclusively on legacy fossil fueled water heating:
 - Fuel Oil
 - Propane
 - Natural Gas


		Starting Share of Commercial SF, %						
[DistrictHeating	1.1	1.2	0.7	1.1	0.9	1.5	1.1
Fuel	Electricity	57.3	53	62.8	57.2	46.5	57.2	55
Water Heating Fuel	FuelOil	11.4	7.7	16.2	13.5	7.9	14.4	10
Wate	NaturalGas	26.2	34.9	11.4	18	42.1	19.8	29.3
	Propane	4.1	3.2	8.9	10.3	2.6	7	4.6
		СТ	MA	ME	NH	RI	VT	NE

30

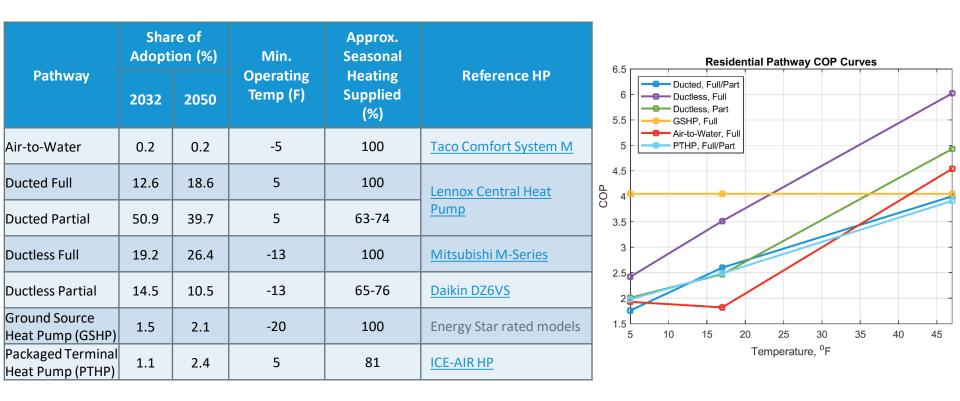

ISO-NE PUBLIC

Commercial Water Heating Adoption

- Adoption forecast for commercial water heating is shown to the right
 - Annual adoption (top)
 - Cumulative adoption (bottom)
- Forecast includes electrification of water heating serving almost a billion SF of commercial space by 2050
- Regional forecast penetration of HPWHs according to legacy water heating fuels is shown on the next slide
 - Similar graphics for state forecast penetrations are included in <u>Appendix IV</u>

Adoption By Legacy Commercial Water Heating Fuel New England

DEMAND MODELING


Demand Modeling Methodology (1 of 2)

- Demand modeling methodology consists of three steps, which are described further below and on the next slide:
 - 1. Develop relationships between hourly heating usage and outdoor temperature for all residential and commercial building types
 - 2. Develop coefficient of performance (COP) curves for all heating pathways
 - 3. Develop models for HP electrical demand
- Step 1: Development of hourly heating load relationships to outdoor temperature for all building types was based on heating usage profiles within NREL's ResStock and ComStock databases that break out energy usage by end use
 - Heating usage was converted to heating load by assuming a boiler/furnace efficiency of 80%

Demand Modeling Methodology (2 of 2)

- Step 2: For each pathway, a reference make/model heat pump was selected, and its coefficient of performance $(COP = \frac{Heat \ Output}{Input \ Power})$ was used to convert hourly heating required to electricity demand
 - High performing HPs are used as reference under the assumption that performance will continue to improve over the forecast horizon
 - All COP curves and reference HP systems are detailed on the next two slides
- Step 3: Development of models for HP electricity demand assumed:
 - Space heating demand is initiated when outside temperatures are below 62°F
 - For partial heating pathways, all heating load needed when temperatures are below 20°F is provided by a supplemental, non-electric heating system
 - Hourly demand is zero for all temperatures 20 degrees F or lower
 - For full heating pathways, electric resistance heat is assumed to be used to meet any load unable to be met by the HP (e.g., when temperatures are lower than the HP's minimum HP operating temperatures)
 - Resulting models for all combinations of building types and heating pathways include separate hourly parameters for both non-holiday weekdays and holidays/weekend days

Residential Space Heating Pathway Assumptions

ISO-NE PUBLIC

Commercial Space Heating Pathway Assumptions

Pathway	Share of Adoption (%)		Min. Operating	Approx. Seasonal	Reference HP	
	2032	2050	Temp. (F)	Heating Supplied (%)		
Air-to-Water	1.4	3.7	0	100	Trane ACX	7 Commercial Pathway COP Curves
Dual Fuel Heat Pump Rooftop Unit (RTU)	17.4	20.6	0	81	Rheem Renaissance Packaged Heat Pump	6 - VRF and Ductless, Full Ductless, Part Air-to-Water, Full RTU, Full/Part and Dual Fuel HP
Ducted Full	0.7	1.8	5	100	Lennox Central Heat	5 GSHP
Ducted Partial	0.7	1.7	5	61-74	<u>Pump</u>	
Ductless Full	3.8	9.3	-13	100	Mitsubishi M-Series	
Ductless Partial	2.5	6.8	5	63-76	Daikin DZ6VS	3
Ground Source Heat Pump	0.2	0.6	-20	100	Energy Star rated models	2
Rooftop Unit (RTU) – Full	68.0	43.5	0	100	Rheem Renaissance	1 0 5 10 15 20 25 30 35 40 45
RTU - Partial	1.5	2.3	0	81	Packaged Heat Pump	Temperature, ^o F
Variable Refrigerant Flow (VRF)	3.8	9.7	-13	100	Mitsubishi M-Series	

ISO-NE PUBLIC

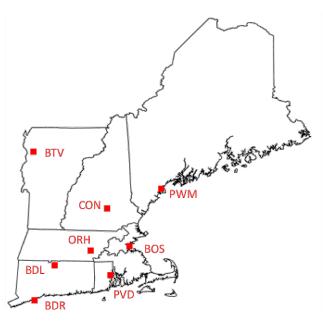
Water Heating Modeling Assumptions

- Assumed location of all HPWH installations is a conditioned or semiconditioned area such that significant changes in COP do not occur as outdoor temperature decreases
 - Specific HP profiles are constant year-round for each building type and only vary to reflect different usage for non-holiday weekdays versus weekend/holidays
 - HPWH profiles reflect hourly average usage throughout the year
 - To reflect a degree of increased space heating load due to HPWH operation, modeling of all residential space heating pathways assumed a minor load increase of 1.2%;

- HPWHs in commercial buildings are assumed to be located in areas that do not meaningfully contribute to space heating loads
- For commercial buildings that have significant hot water loads that may need booster heat, 15% of the total water heating load is assumed to come from an electric booster, with a COP of 1.0
 - The weighted average COP of boosted/non-boosted heating is used

FINAL 2023 ENERGY FORECAST

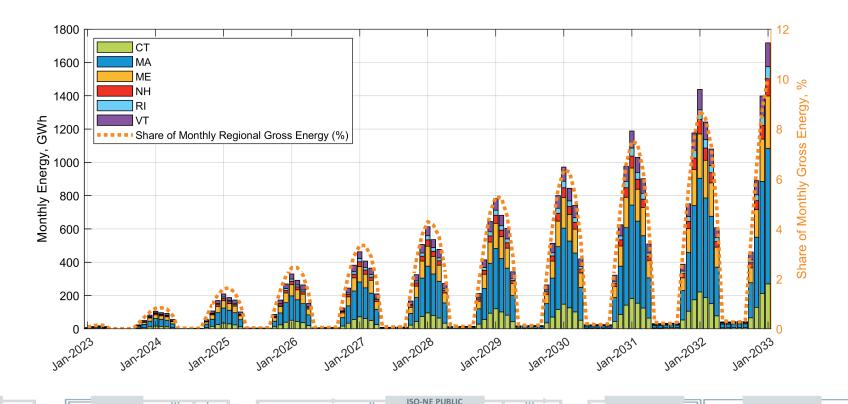
Weather Used in HP Simulation Profiles


Station Weights Used for Each State

State weather used in HP simulations is calculated using station weights below

Locations of weather stations

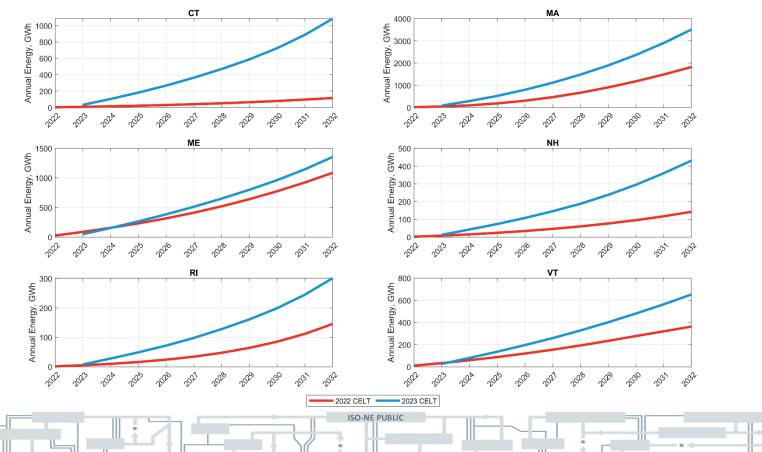
Weather Station (City, State)	Weather Station	СТ	MA	ME	NH	RI	VT
Boston, MA	BOS	-	0.44	-	-	-	-
Bridgeport, CT	BDR	0.17	-	-	-	-	-
Burlington, VT	BTV	-	-	-	-	-	1.00
Concord, NH	CON	-	-	-	1.00	-	-
Portland, ME	PWM	-	-	1.00	-	-	-
Providence, RI	PVD	-	0.27	-	-	1.00	-
Windsor Locks, CT	BDL	0.83	0.16	-	-	-	-
Worcester, MA	ORH	-	0.13	-	-	-	-


ISO-NE PUBLIC

Estimating Energy Impacts of HP Adoption

- Hourly HP profiles were simulated based on modeling described in slides 26-31 and weather over the period 1991-2020 (30 years)
 - Corresponds to the "weather normal" period used for gross energy modeling
- The process for estimating monthly energy impacts for each state is as follows:
 - 1. Calculate the mean monthly energy value for the hourly demand simulations generated for each combination of heating pathway/building type based on state weather
 - a) Station-level weather is converted to state weather using weights tabulated on slide 40
 - 2. Multiply mean monthly energy values from step 1 by the appropriate monthly HP adoption values for each combination of heating pathway/building type
 - 3. Sum resulting energy values for all HP types for each state
 - a) Regional energy is the sum of all state energy values
 - 4. Gross up all energy values by 6% to account for assumed transmission and distribution losses, consistent with other forecast processes
- Refer to slides 41-45 of the ISO's <u>Long-Term Load Forecast Methodology</u> <u>Overview</u> for background information on the methodology used for the gross energy forecast

Monthly Energy, GWh


Annual Energy, GWh

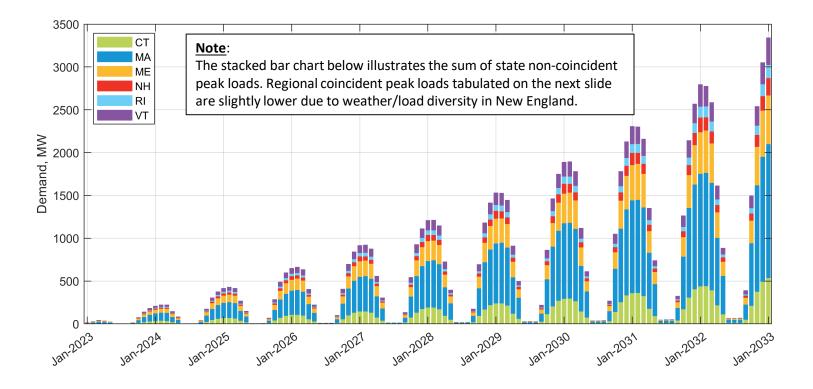
	Annual Energy (GWh)									
Year	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Connecticut	32	104	182	268	364	470	588	725	888	1,085
Massachusetts	87	290	522	798	1,117	1,482	1,896	2,367	2,907	3,510
Maine	49	155	266	385	513	651	800	963	1,146	1,354
New Hampshire	13	43	74	108	146	188	238	295	360	431
Rhode Island	8	28	49	72	98	128	161	199	245	301
Vermont	26	80	136	196	259	328	402	481	564	653
Total	215	699	1,229	1,827	2,498	3,247	4,085	5,030	6,111	7,334

ISO-NE PUBLIC

Annual Heating Electrification Energy

Final CELT 2023 vs. Final CELT 2022

FINAL 2023 DEMAND FORECAST



Estimating Demand Impacts of HP Adoption

- The weekly weather distributions used to generate weekly gross load forecast distributions are used to estimate monthly HP demand impacts for each state as follows:
 - 1. Input weekly state weather distributions (for each week in a given month) to the hour ending 18 demand model for each combination of heating pathway/building type
 - 2. Multiply resulting per HP demand value by the appropriate monthly HP adoption values for each combination of heating pathway/building type
 - 3. Sum resulting demand values for all combinations of heating pathway/building types
 - 4. Calculate the "50/50" (i.e., "P95") and "90/10" (i.e., "P99") values for each week of the forecast; maximum 50/50 and 90/10 values in each month are monthly demand forecasts
 - Aligns with the percentiles used in the gross load forecast
 - 5. Gross up by 8% to account for assumed transmission and distribution losses, consistent with other forecast processes

- Regional HP demand is the sum of the resulting "weather coincident" state HP demand values
 - Steps 4 and 5 above are then performed uniquely for regional sums of HP demand
- Refer to slides 46-50 of the ISO's <u>Long-Term Load Forecast Methodology Overview</u> for background information on the methodology used for the gross demand forecast

Monthly Demand, 50/50

ISO-NE PUBLIC

Winter (January) Demand, 50/50

	Winter Peak (MW)										
Year	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	
Connecticut	34	71	111	155	184	224	277	332	415	485	
Massachusetts	72	148	254	364	438	586	742	945	1,149	1,366	
Maine	34	73	111	156	201	248	306	367	446	513	
New Hampshire	13	28	43	59	72	88	112	130	156	178	
Rhode Island	8	18	28	37	47	60	70	86	104	128	
Vermont	15	33	54	76	99	126	166	203	251	294	
Total	175	370	601	848	1,040	1,333	1,673	2,063	2,521	2,965	

ISO-NE PUBLIC

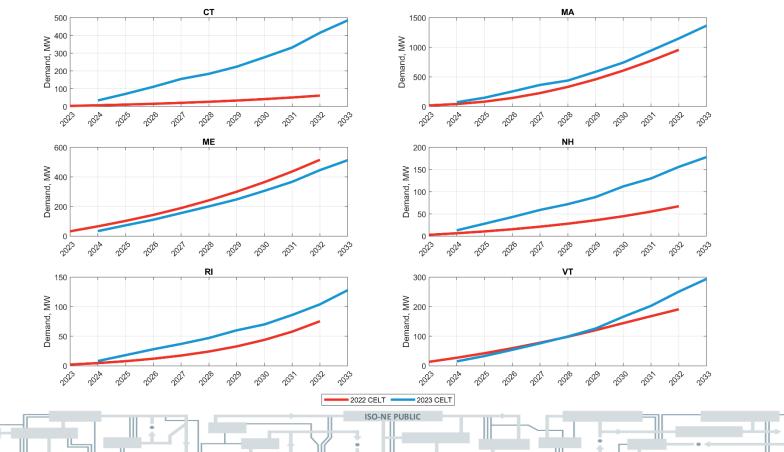
48

Notes:

- 1. State values are at the time of New England coincident peak loads.
- 2. State values may not sum to the total region values due to rounding.

Winter (January) Demand, 90/10

	Winter Peak (MW)										
Year	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	2030-31	2031-32	2032-33	
Connecticut	41	85	133	183	240	302	372	463	566	690	
Massachusetts	94	195	299	423	565	725	907	1,131	1,380	1,664	
Maine	44	92	147	207	277	356	446	553	673	809	
New Hampshire	16	32	50	73	94	120	151	189	228	271	
Rhode Island	10	20	32	45	56	71	87	108	133	163	
Vermont	20	42	67	96	132	174	225	287	357	435	
Total	225	466	728	1,026	1,365	1,749	2,188	2,732	3,337	4,033	


ISO-NE PUBLIC

49

Notes:

- 1. State values are at the time of New England coincident peak loads.
- 2. State values may not sum to the total region values due to rounding.

Winter Heating Electrification Peak Demand, 50/50 CELT 2023 vs. CELT 2022

Summer (July) Demand, 50/50 and 90/10

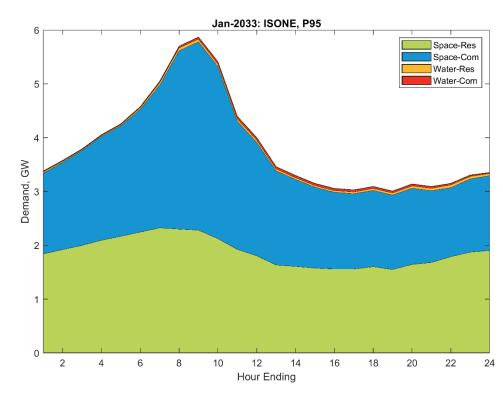
	Summer Peak (MW)											
Year	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032		
Connecticut	0	1	2	2	3	4	6	7	9	12		
Massachusetts	1	2	4	6	8	11	15	20	26	35		
Maine	0	1	1	2	2	3	4	6	7	10		
New Hampshire	0	0	1	1	1	2	2	3	3	4		
Rhode Island	0	0	1	1	1	2	3	3	4	5		
Vermont	0	0	0	0	1	1	1	2	2	3		
Total	2	5	8	12	17	23	31	41	53	69		

ISO-NE PUBLIC

51

Notes:

1. Summer demand values are due to electrified water heating

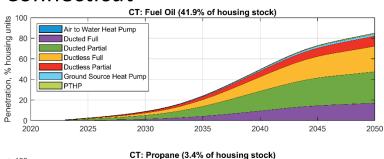

50/50 Winter Peak Composition

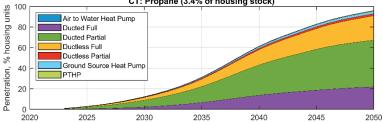
January 2033

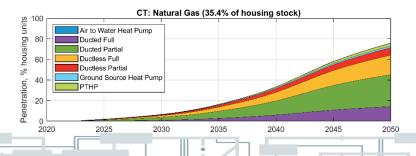
- Plot shows the forecast composition of hourly winter 50/50 peak demand impacts of heating electrification in January 2033
 - Residential space heating ("Space-Res")
 - Commercial space heating ("Space-Com")
 - Residential water heating ("Water-Res")
 - Commercial water heating ("Water-Com")

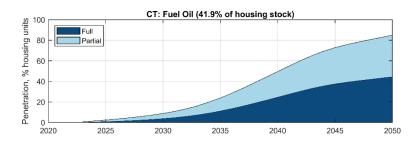
ISO-NE PUBLIC

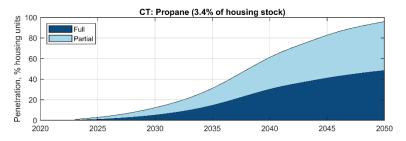
- Demand during morning peak hours is significantly higher than during typical ISO-NE coincident winter peak hour(s) (hours 18-19) that exist today
- ISO will continue to investigate the outlook for potential load shape impacts such as these as part of its electrification forecasting efforts

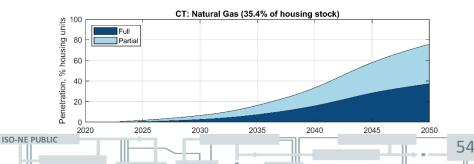


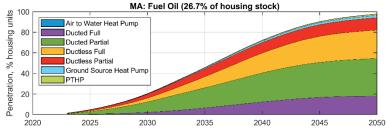

APPENDIX I

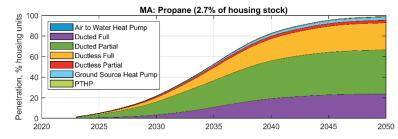

State Adoption Plots – Residential Space Heating

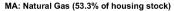


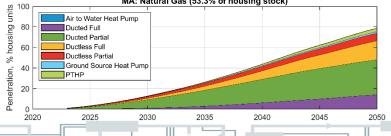

Adoption By Legacy Residential Space Heating Fuel



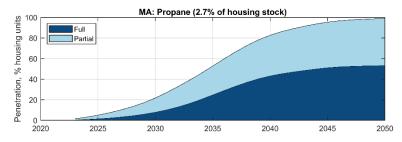


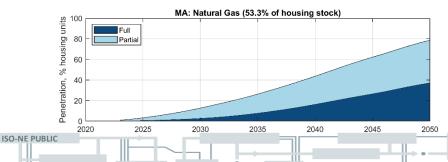


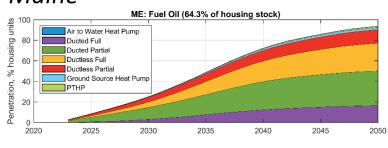


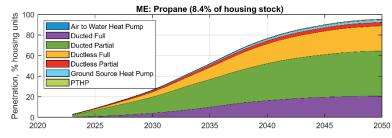

Adoption By Legacy Residential Space Heating Fuel

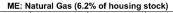

Massachusetts

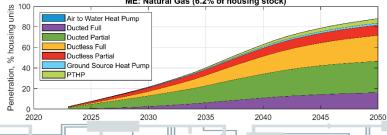




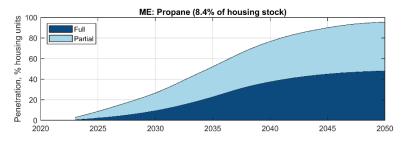


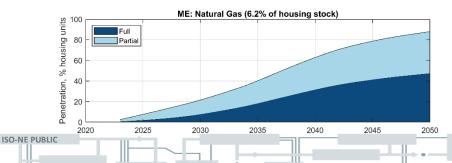


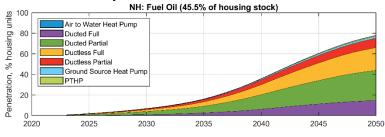


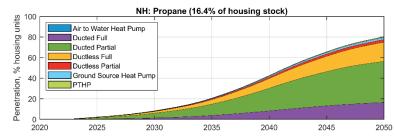


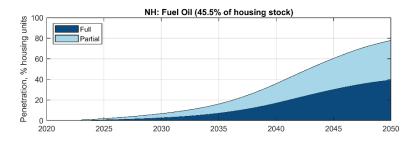
Adoption By Legacy Residential Space Heating Fuel Maine

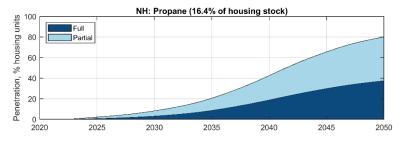


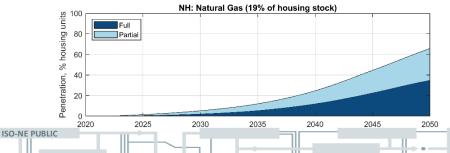


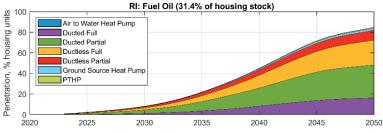


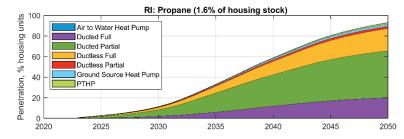


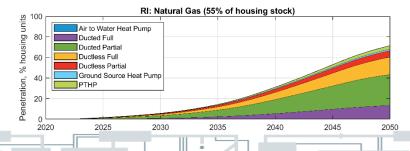

Adoption By Legacy Residential Space Heating Fuel

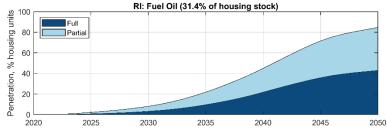

New Hampshire

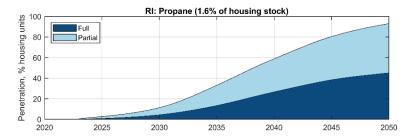


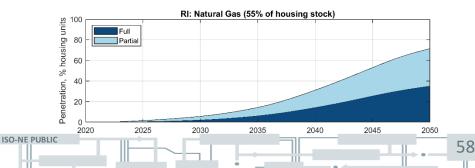


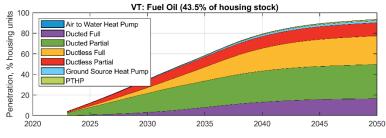


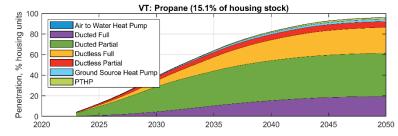


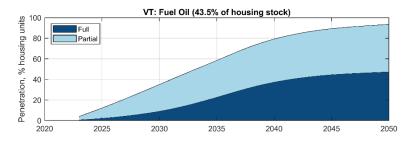


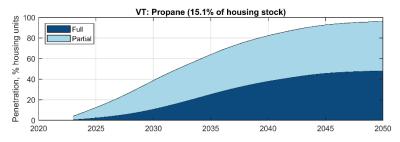

Adoption By Legacy Residential Space Heating Fuel Rhode Island

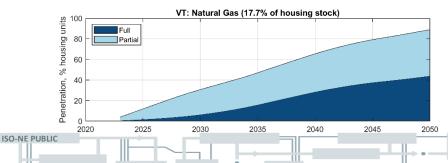




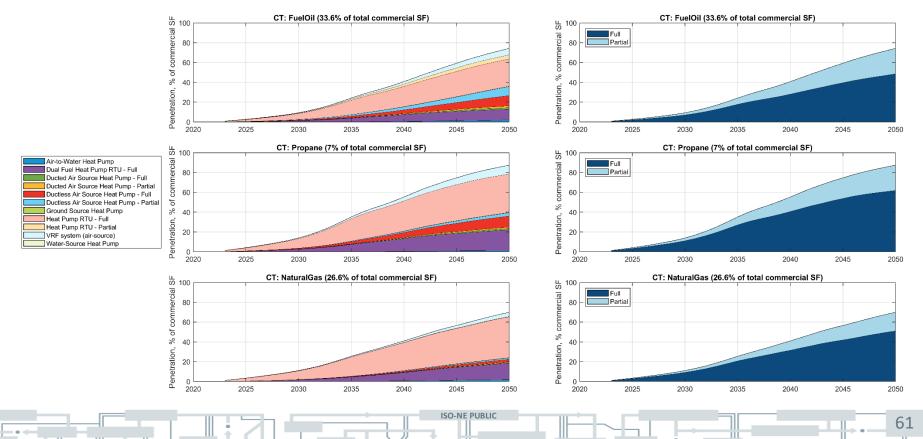



Adoption By Legacy Residential Space Heating Fuel

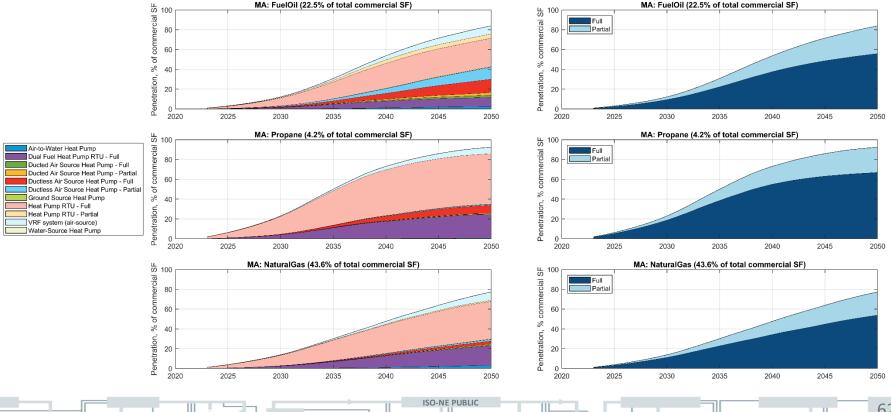

Vermont

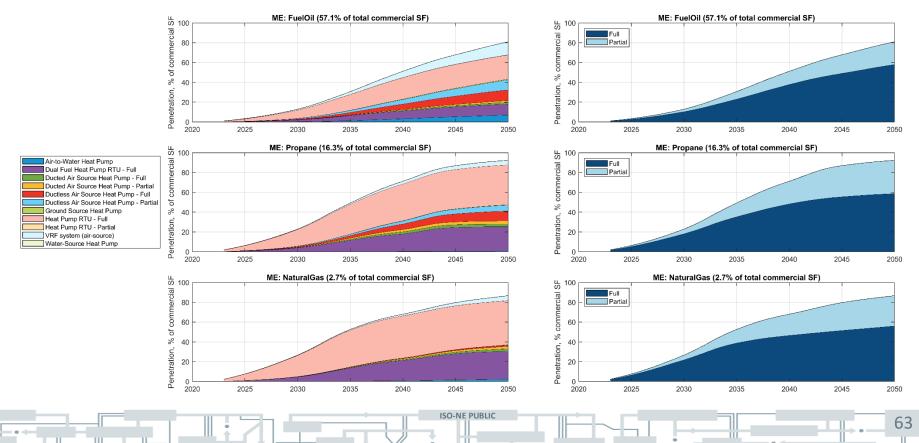


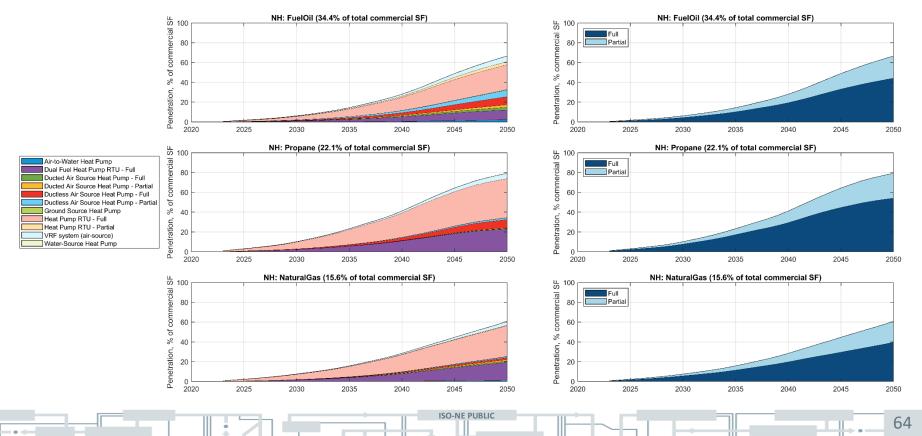
VT: Natural Gas (17.7% of housing stock) housing units 80 90 Air to Water Heat Pump Ducted Full Ducted Partial Ductless Full Ductless Partial % Ground Source Heat Pump 40 Penetration, PTHP 20 2025 2030 2035 2040 2020 2045 2050

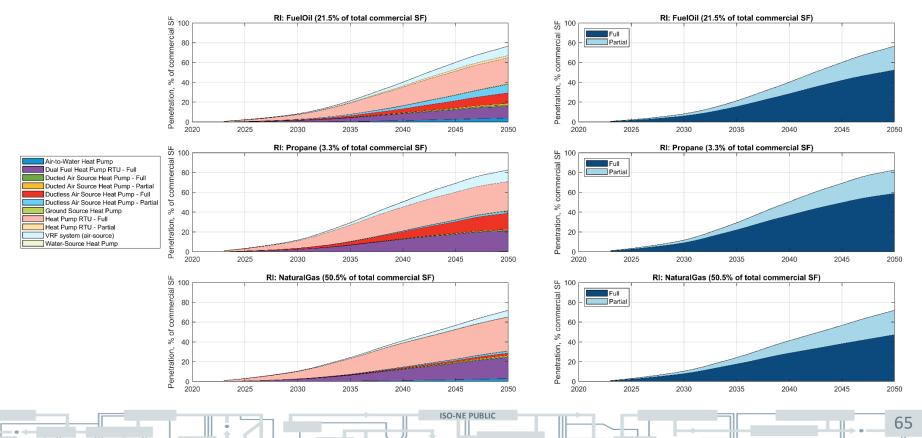


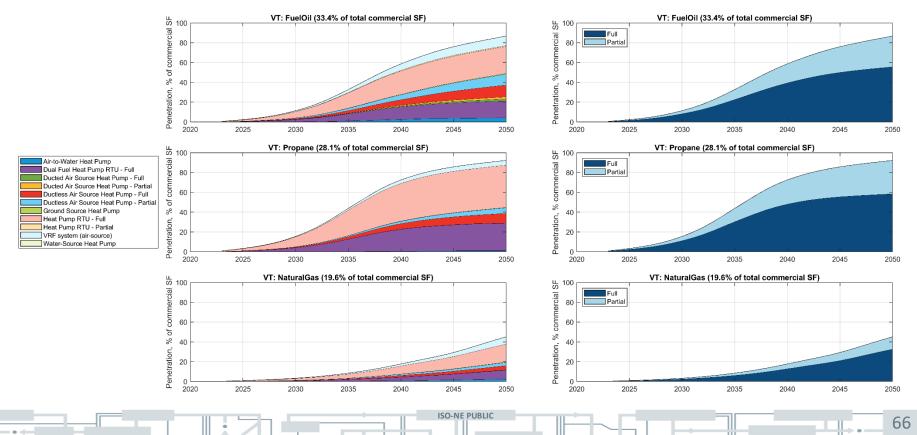
APPENDIX II


State Adoption Plots – Commercial Space Heating


Adoption By Legacy Commercial Space Heating Fuel

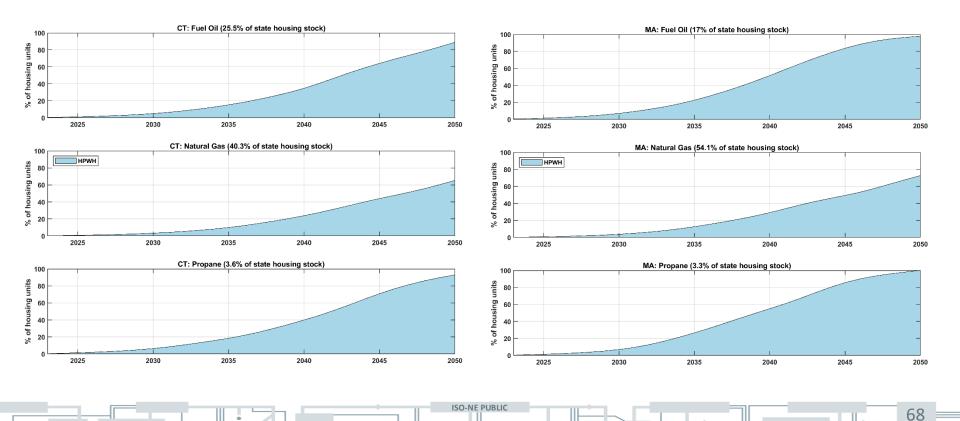

Adoption By Legacy Commercial Space Heating Fuel Massachusetts


Adoption By Legacy Commercial Space Heating Fuel Maine

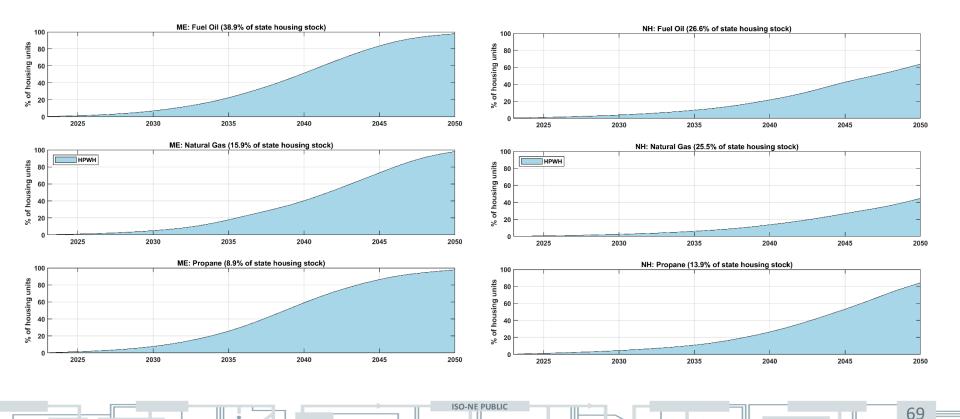

Adoption By Legacy Commercial Space Heating Fuel New Hampshire

Adoption By Legacy Commercial Space Heating Fuel Rhode Island

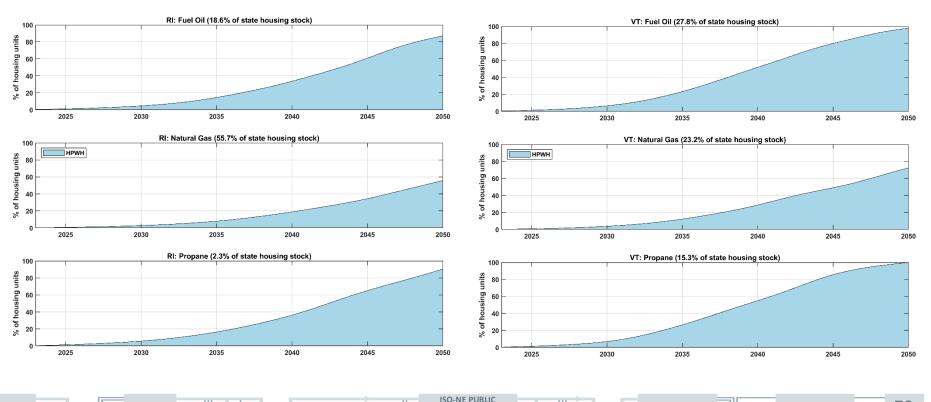
Adoption By Legacy Commercial Space Heating Fuel Vermont


APPENDIX III

State Adoption Plots – Residential Water Heating


Adoption By Legacy Residential Water Heating Fuel

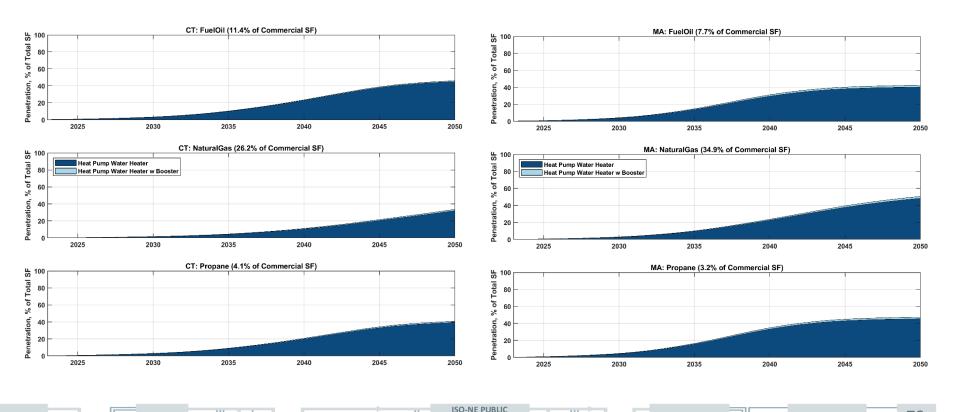
Connecticut (left) and Massachusetts (right)



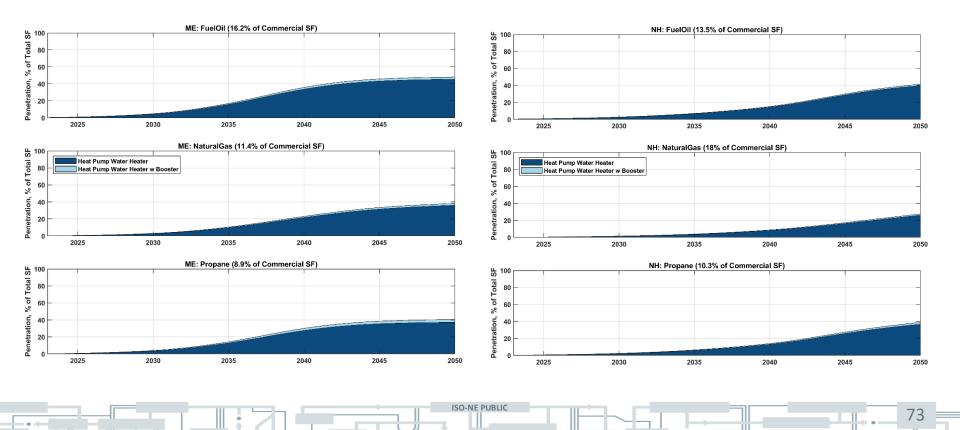
Adoption By Legacy Residential Water Heating Fuel

Maine (left) and New Hampshire (right)

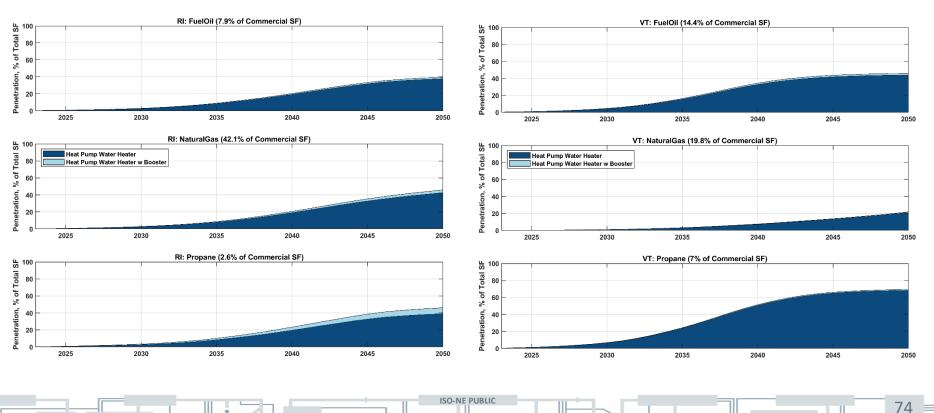
Adoption By Legacy Residential Water Heating Fuel *Rhode Island (left) and Vermont (right)*


APPENDIX IV

State Adoption Plots – Commerical Water Heating



Adoption By Legacy Commercial Water Heating Fuel


Connecticut (left) and Massachusetts (right)

Adoption By Legacy Commercial Water Heating Fuel Maine (left) and New Hampshire (right)

Adoption By Legacy Commercial Water Heating Fuel Rhode Island (left) and Vermont (right)

