APRIL 28, 2023

new england

Final 2023 Transportation Electrification Forecast

ISO-NE PUBLIC

Outline

- Introduction
- Electric Vehicle Adoption
- Energy and Demand Modeling Methodology

ISO-NE PUBLIC

- Energy Forecast
- Demand Forecast

Acronyms

- **BEV** Battery Electric Vehicle
- **BTM PV** Behind-the-meter Photovoltaic
- **CELT** Capacity, Energy, Loads and Transmission
- **EIA** Energy Information Agency
- **EV** Electric Vehicle
- FCM Forward Capacity Market
- **GHG** Greenhouse Gas
- **HE** Hour Ending

- ICR Installed Capacity Requirement
- LDV Light-Duty Vehicle
- LFC- Load Forecast Committee
- **PHEV** Plug-in Hybrid Electric Vehicle
- **RSP** Regional System Plan
- TCI Transportation Climate Initiative
- VMT Vehicle Miles Traveled

Introduction

- Transportation electrification is expected to play a pivotal role in the achievement of New England state greenhouse gas (GHG) reduction mandates and goals
- Forecasted impacts of transportation electrification on state and regional electric energy and demand are included as part of the 2023 Capacity, Energy, Loads, and Transmission (CELT) forecast
- The ISO's transportation electrification forecast seeks to forecast the energy and demand impacts associated with the uptake of electric vehicles (EVs) within selected categories of vehicles:

ISO-NE PUBL

- Light-duty personal vehicles
- Light-duty fleet vehicles
- Medium-duty delivery vehicles
- School buses
- Transit buses

Methodology Updates for CELT 2023

- Developed a more consistent approach to generate state-level EV adoption forecasts
 - This effort includes canvasing of all federal, state, and local goals regarding EV adoption
 - Details on state-level adoption forecasting were discussed in the <u>December 9, 2022</u> <u>transportation electrification adoption forecast presentation</u>
- Enhanced weather sensitivity of the energy and demand impacts of the personal light-duty vehicle portion of the forecast
 - Aligns methodology across all vehicle types
 - Moves from static monthly profiles to dynamic modeling of daily energy consumption based on weather
 - For more information see slides 4-9 of the <u>November 7, 2022 update on the</u> <u>transportation electrification forecast</u>

EV Adoption Forecast Overview

- For the CELT 2023 forecast, ISO has developed a more consistent approach for generating state-level EV adoption forecasts
- ISO has developed two adoption scenarios that reflect different assumptions about the pace and extent of transportation electrification within each state

- <u>"Full Electrification" adoption scenario</u>

- Intended to represent an upper bound on the pace and extent of EV adoption
- Reflects comprehensive EV adoption estimates reflective of state emissions goals and associated EV adoption targets will be developed
- Assumes state ZEV (Zero Emissions Vehicle) goals are met entirely by electric vehicles
- Assumes all vehicles in each vehicle class are electrified by 2050
- This scenario is informational only (not directly used in the forecast)
- <u>"CELT 2023" adoption scenario</u>
 - Intended to reflect the likely pace and level of EV adoption over the next 10 years given the current understanding of individual state goals, policies, and programs
 - Reflects uncertainty in the timing of goal achievement and extent to which electric vehicles will be utilized to accomplish goals
 - This scenario was used to generate the energy and demand impacts for the CELT 2023 forecast

ISO-NE PUBLIC

Federal EV Adoption Considerations

- Inflation Reduction Act
 - Enacts a tiered incentive for the purchase of new personal light-duty EVs meeting increasingly strict vehicle assembly and material sourcing requirements through 2032
 - Includes incentives for the purchase of used EVs through 2032
 - Includes incentives for the purchase of commercial light, medium, and heavy-duty EVs though 2032
 - Impact on regional EV adoption remains uncertain
- Environmental Protection Agency's (EPA) Clean School Bus Program
 - Funding from the Bipartisan Infrastructure Law provides \$5 billion over the next five years (FY 2022-2026) to replace existing school buses with zero-emission and low-emission models
 - A number of New England cities have already been awarded funding during the 2022 selection process and have made clear their intent to apply for future funding
- <u>2021 White House announcement regarding 2030 goal for light-duty vehicle sales</u> which was applied to the adoption of both personal and fleet light-duty vehicles and aims for:

ISO-NE PUBLIC

"...electric vehicles to make up 50% of all vehicles sold in the United States by 2030."

State-Specific EV Adoption Considerations

- Multi-State Zero-Emission Vehicle MOUs
 - 2013 Multi-State Zero-Emission Vehicle MOU (MA, CT, RI, VT) goal of 5 million light-duty ZEVs on road by 2025 across the 9 signatory states
 - 2020 Multi-State Medium- and Heavy-Duty Zero Emission Vehicle MOU (MA, CT, RI, VT, ME) commitment to phase out fossil fuel-burning medium- to heavy-duty truck and bus sales by one hundred percent by 2050, with a target for 30 percent of new truck and bus sales to be zero-emission by 2030 in all 15 signatory states
- Various individual state and local considerations including
 - State transportation electrification "Road Maps"
 - Local (usually individual cities) announcements/goals/programs for transitioning public transit and school bus fleets to ZEV State transportation electrification "Action Plans"
- Existing or anticipated adoption of California rules for ZEVs (MA and VT)
 - Advanced Clean Cars II (ACCII) requires by 2035 that 100% of light-duty vehicles sold will be ZEVs
 - Advanced Clean Trucks (ACT) requires by 2035 that:
 - 55% of Class 2b 3 truck sales are zero emissions.
 - 75% of Class 4 8 straight truck sales are zero emissions.
 - 40% of truck tractor sales are zero-emissions
- State feedback .
 - The ISO has shared all assumptions and references, along with preliminary adoption figures with each of the six New England states. Guidance was provided on:

ISO-NE PUBLIC

- Reasonableness of the "Full Electrification" scenario
- Considerations for developing the "Draft CELT 2023" scenario
- See Appendix I for more details on state-level considerations

Final 2023 EV Adoption Forecast

Cumulative EV Stock for New England

Personal Light-Duty EV Adoption

MA

0.2

2020

2030

2040

% of

С

2050

Annual Incremental Increase in EV Stock

Year	СТ	MA	ME	NH	RI	VT	NE
2023	20,844	48,107	4,634	2,251	5,461	4,604	85,901
2024	27,146	72,081	9,218	4,801	7,165	5,748	126,159
2025	33,759	93,651	13,758	8,006	8,773	7,095	165,043
2026	40,468	116,072	19,036	11,115	10,414	8,601	205,706
2027	47,110	138,446	25,066	14,385	12,403	10,267	247,676
2028	53,768	160,595	32,035	17,830	14,418	12,097	290,742
2029	61,258	182,196	39,262	21,371	16,470	14,082	334,639
2030	68,898	203,904	45,314	24,946	18,577	16,089	377,727
2031	77,764	227,216	49,894	28,655	20,756	18,366	422,651
2032	87,919	251,736	52,854	32,593	22,643	20,935	468,679
10-year total (2023-2032)	518,934	1,494,004	291,071	165,953	137,080	117,884	2,724,923
Previous 10- year total (2022-2031)	369,920	530,755	258,273	58,524	96,652	207,673	1,521,796
Change	+149,014	+963,249	+32,798	+107,429	+40,428	-89,789	+1,203,127

11

CELT 2023 Full Electrification ····· CELT 2022

2020

2030

2040

Ъ

Fleet Light-Duty EV Adoption

Annual Incremental Increase in EV Stock

Year	СТ	MA	ME	NH	RI	VT	NE
2023	348	4,784	494	153	101	95	5,975
2024	782	7,175	1,002	345	228	166	9,698
2025	1,338	9,567	1,577	590	390	265	13,728
2026	1,877	11,959	2,130	828	547	369	17,710
2027	2,450	14,351	2,693	1,081	714	487	21,777
2028	3,059	16,743	3,257	1,349	891	620	25,919
2029	3,702	19,135	3,821	1,625	1,079	757	30,117
2030	4,362	21,526	4,385	1,900	1,271	899	34,344
2031	5,040	23,918	4,948	2,181	1,469	1,050	38,607
2032	5,735	26,310	5,437	2,473	1,671	1,211	42,838
10-year total (2023-2032)	28,693	155,468	29,744	12,525	8,361	5,919	240,713
Previous 10- year total (2022-2031)	10,588	25,222	4,525	4,060	3,705	2,106	50,206
Change	+18,105	+130,246	+25,219	+8,465	+4,656	+3,813	+190,507

Full Electrification ····· CELT 2022 — CELT 2023

Medium-Duty Delivery EV Adoption

Annual Incremental Increase in EV Stock

Year	СТ	MA	ME	NH	RI	VT	NE
2023	13	27	4	3	5	3	55
2024	26	52	7	5	7	4	101
2025	40	83	18	8	9	6	164
2026	54	112	27	10	12	8	223
2027	68	141	38	14	16	10	287
2028	83	171	50	18	20	13	354
2029	99	204	61	23	25	15	426
2030	115	238	74	28	30	18	502
2031	132	272	86	34	35	20	579
2032	148	311	99	41	40	23	661
10-year total (2023-2032)	778	1,611	464	184	199	120	3,352
Previous 10- year total (2022-2031)	514	1,064	378	152	155	93	2,356
Change	+264	+547	+86	+32	+44	+27	+996

School Bus EV Adoption

Annual Incremental Increase in EV Stock

Year	СТ	MA	ME	NH	RI	VT	NE
2023	133	68	14	4	8	5	232
2024	144	103	27	7	11	8	300
2025	154	140	47	11	18	12	381
2026	165	179	66	15	25	16	467
2027	176	224	89	21	34	21	564
2028	188	277	112	29	44	27	678
2029	202	320	138	40	56	33	789
2030	217	362	164	53	68	40	904
2031	230	410	190	70	81	48	1029
2032	248	459	217	88	94	56	1161
10-year total (2023-2032)	1,857	2,542	1,064	338	439	266	6,505
Previous 10- year total (2022-2031)	1,032	1,502	857	244	286	228	4149
Change	+825	+1,040	+207	+94	+153	+38	+2,356

Transit Bus EV Adoption

Annual Incremental Increase in EV Stock

Year	СТ	MA	ME	NH	RI	VT	NE
2023	7	14	4	0	6	1	32
2024	7	19	4	0	7	1	38
2025	9	27	4	1	8	2	51
2026	11	35	4	1	9	2	62
2027	13	41	5	1	10	2	73
2028	15	47	5	2	12	3	83
2029	18	55	5	2	13	4	98
2030	22	64	5	3	15	5	114
2031	26	73	6	3	17	5	131
2032	30	86	6	4	19	6	151
10-year total (2023-2032)	158	461	48	17	116	31	833
Previous 10- year total (2022-2031)	134	247	34	13	94	45	567
Change	+24	+214	+14	+4	+22	-14	+266

ENERGY AND DEMAND MODELING METHODOLOGY

Methodology Overview

- Energy and demand impacts are based on analysis of vehicle driving patterns and a sample of vehicle charging data
- Inputs developed specific to each vehicle category
 - Annual vehicle miles traveled (VMT)
 - Monthly allocation of VMT
 - Reflects seasonal driving patterns
 - Allocations for monthly VMT to weekdays/weekends
 - Hourly allocation of daily charging, by month
 - Shapes for Weekdays and weekends
 - Relationship between weather (daily average dry-bulb) and EV efficiency (kWh/mile)
- Monthly energy and demand impacts are developed for each vehicle category
 - Develop VMT assumptions for all days within a month
 - Apply temperature sensitive efficiency relationships to get daily energy
 - Apply daily charging shapes to allocate charging to hours
 - Monthly energy impacts stem from the same 30 year normal period used in the load forecast

ISO-NE PUBLIC

- Monthly demand impacts result from applying the weather distribution used in the load forecast
- Scale to adoption forecast

Vehicle Miles Traveled (VMT)

Annual VMT

Vehicle Category	Average Annual VMT
School bus	11,483
Transit bus	38,488
Medium-duty delivery	13,655
Light-duty fleet	21,258
Light-duty personal	11,505

Monthly VMT Allocation

Day-type VMT Allocation

18

ISO-NE PUBLIC

Electric Vehicle Efficiency

Energy Consumption as a Function of Daily Temperature

Allocation of Hourly Charging by Month

Non-Holidays & Weekdays

Allocation of Hourly Charging by Month

Holidays & Weekends

ENERGY FORECAST

Estimating Energy Impacts of EV Adoption

Average Daily Charging Energy – New England

2023 Transportation Electrification Forecast *Monthly Energy*

New England Comparison Between CELT 2022 and CELT 2023

Annual Energy

DEMAND FORECAST

Estimating Demand Impacts of EV Adoption

- For applications that include hourly analysis, EV demand will be modeled hourly
 - E.g., probabilistic ICR analysis
- Other forecast applications and reporting require a deterministic peak value (e.g., CELT report), and for which:
 - Winter peak demand:
 - Use the monthly average EV demand from HE 18-19
 - January-April, October-December
 - Summer demand impacts should reflect expectations of peak shifting due to increasing BTM PV penetrations
- Weather-sensitive demand impacts
 - Hourly weekday allocation of daily energy is used to estimate demand impacts
 - Daily energy is derived using VMT and temperature responsiveness of electric vehicle efficiency

ISO-NE PUBL

Summer Peak Net Load as BTM PV Increases

- Hourly net load and BTM PV data from the summers (July/August) of 2014-2021 were analyzed to simulate net loads with increasing penetrations of BTM PV
- Scatter plot shows the hour ending (HE) and magnitude (in GW) of net peak load as BTM PV increases
- Gray areas reflect estimated window of hours peak load may occur
 - Yellow areas highlight peak hours

Interaction of EV Summer Demand and BTM PV

ISO-NE PUBLIC

- For forecast applications and reporting that require a deterministic peak value, EV demand during the summer months is estimated as the average monthly EV demand during the summer peak hours tabulated to the right
 - May through September
 - Hours reflect effect of shifting peak demand due to BTM PV
- Used for forecasts of fleet vehicles and personal light-duty personal vehicles

Year	PV Nameplate Bin (GW)*	Summer Peak Hours
2023	6	[17,18,19]
2024	7	[17,18,19]
2025	8	[18,19,20]
2026	8	[18,19,20]
2027	9	[18,19,20]
2028	10	[18,19,20]
2029	10	[18,19,20]
2030	11	[18,19,20]
2031	11	[18,19,20]
2032	11	[18,19,20]

*Based on 2022 PV forecast values

Monthly 50/50 Peak Demand by State

50/50 Summer Peak Demand

Summer Peak Demand (MW)								
Year	СТ	MA	ME	NH	RI	VT	NE	
2023	9	23	2	1	2	2	39	
2024	28	73	8	4	7	6	126	
2025	52	142	18	9	13	11	245	
2026	94	264	36	19	24	19	456	
2027	134	386	57	30	34	27	669	
2028	180	529	84	45	47	37	922	
2029	233	693	118	63	61	49	1,216	
2030	293	877	157	84	78	62	1,551	
2031	361	1,084	201	108	96	78	1,927	
2032	438	1,311	249	136	117	96	2,346	

New England (July)

50/50 Winter Peak Demand

Winter Peak (MW)									
Year	СТ	MA	ME	NH	RI	νт	NE		
2023	27	66	7	3	7	6	116		
2024	59	156	19	9	15	13	271		
2025	98	270	38	19	25	22	473		
2026	146	414	63	33	37	33	726		
2027	204	591	97	51	52	46	1,042		
2028	269	790	140	73	70	62	1,404		
2029	343	1,019	191	100	90	79	1,822		
2030	427	1,271	250	132	112	100	2,293		
2031	519	1,556	315	169	138	124	2,820		
2032	629	1,875	386	211	166	152	3,420		

New England (January)

50/50 New England Comparison Between CELT 2022* and CELT 2023

Summer (July) Demand

Winter (January) Demand

APPENDIX I

State-Specific EV Adoption Forecast Considerations

Massachusetts

EV Adoption Forecast Drivers

- 2013 Multi-State Zero-Emission Vehicle MOU
 - Collective target among initial signatory states to achieve a goal of 3.3 million EVs on the road by 2025
- <u>2020 Multi-State Medium- and Heavy-Duty Zero</u> Emission Vehicle MOU
 - Goal that all new medium- and heavy-duty vehicle sales in each of 15 state jurisdictions be zero-emission vehicles by 2050, with an interim goal of 30% of new vehicle sales by 2030
- MA Decarbonization Roadmap
 - Reducing emissions 45% below 1990 levels by 2030 would require that about 1 million of the 5.5 million LDVs projected to be registered in the Commonwealth in 2030 be ZEVs
- <u>City of Boston Mayor's Office Announcement</u> (2022)
 - Electric school bus pilot program, deploying 20 buses during the 2022-2023 school year
 - Goal to electrify all 700 of the city's school buses by 2030

ISO-NE PUBLIC

- MBTA Procurement of 40-Foot, Low Floor, Battery Electric Buses (issued April 2022)
 - MBTA is soliciting bids from manufacturers to obtain up to 460 new battery-electric buses starting in 2023
- MBTA Bus Electrification Plan (May 2022)
 - The MBTA is working to convert it's entire bus fleet of 1,150 buses to battery electric buses by 2040
- <u>Adoption of California's Clean Trucks Act</u> requires by 2035 that:
 - 55% of Class 2b 3 truck sales are zero emissions
 - 75% of Class 4 8 straight truck sales are zero emissions
 - 40% of truck tractor sales are zero-emissions
- <u>Advanced Clean Cars II (ACCII)</u> requires by 2035 that:
 - 100% of light-duty vehicles sold will be zero emissions

- <u>2021 White House announcement regarding 2030</u> goal for light-duty vehicle sales
 - Aims for "...electric vehicles to make up 50% of all vehicles sold in the United States by 2030."

Massachusetts

EV Adoption Forecast Assumptions

- "Full Electrification" scenario
 - Assumes all state and local policy, programs, goals and announcement targets are achieved in the listed timeframe solely through the adoption of electric vehicles
- "CELT 2023" scenario
 - School buses, transit buses, and medium-duty delivery
 - Maintains that the 2030 MDHD ZEV goal (30% of new truck and bus sales) is met by EVs
 - Personal and fleet light-duty vehicles
 - Assumes ACCII rule is met (100% of new vehicle sales by 2035) by EVs

ISO-NE PUBL

Connecticut

EV Adoption Forecast Drivers

- 2013 Multi-State Zero-Emission Vehicle MOU
 - Collective target among initial signatory states to achieve a goal of 3.3 million EVs on the road by 2025
- 2020 Multi-State Medium- and Heavy-Duty Zero Emission Vehicle MOU
 - Goal that all new medium- and heavy-duty vehicle sales in each of 15 state jurisdictions be zero-emission vehicles by 2050, with an interim goal of 30% of new vehicle sales by 2030
- Electric Vehicle Roadmap for Connecticut
 - Goal of putting 125,000 to 150,000 EVs on the road in CT by 2025 per the 2013 ZEV MOU (annual LDV sales are roughly 150,000-180,000 vehicles)

- Public Act No. 22-25
 - Mandates targets for the procurement of state owned or leased light-duty vehicles
 - State fleet is roughly 3,500 out of almost 3 million light-duty vehicles state-wide
 - Transit Buses
 - After January 1, 2030, at least 30% of all buses purchased or leased by the state shall be zeroemission buses
 - Public transit bus fleet is roughly 400 of all 770 total state-wide
 - School buses

ISO-NE PUBLIC

- 100% of all school buses in <u>environmental</u> justice communities must be ZEV by 1/1/2030
- All school buses must be ZEV (all electric or alternative fuel) by 1/1/2040
- Roughly 1800 school buses are considered to be with in environmental justice communities out of 5,300 state-wide
- 2021 White House announcement regarding 2030 goal for light-duty vehicle sales
 - Aims for "...electric vehicles to make up 50% of all vehicles sold in the United States by 2030."

Connecticut

EV Adoption Forecast Assumptions

- "Full Electrification" scenario
 - Assumes all state and local policy, programs, goals and announcement targets are achieved in the listed timeframe solely through the adoption of electric vehicles
- "CELT 2023" scenario
 - Medium-duty delivery
 - Maintains that the MDHD MOU ZEV goal (30% of new truck and bus sales by 2030) is met by EVs
 - School buses and transit buses
 - Reflects EV adoption beyond the MDHD ZEV MOU, shadowing the trajectory of EV adoption for these vehicles outlined in Public Act No. 22-25

ISO-NE PUBLI

- Personal and fleet light-duty vehicles
 - Split between the CELT 2022 forecast and the "Full Electrification" scenario, recognizing the EV goals currently in place, but reflecting the fact that there is significant uncertainty in the timing of progress toward these goals over the next decade

Vermont

EV Adoption Forecast Drivers

- 2013 Multi-State Zero-Emission Vehicle MOU
 - Collective target among initial signatory states to achieve a goal of 3.3 million EVs on the road by 2025
- <u>2020 Multi-State Medium- and Heavy-Duty Zero Emission Vehicle MOU</u>
 - Goal that all new medium- and heavy-duty vehicle sales in each of 15 state jurisdictions be zeroemission vehicles by 2050, with an interim goal of 30% of new vehicle sales by 2030
- Initial Vermont Climate Action Plan (2021)
 - Modeling indicates that in order to achieve the state's emissions reduction requirements
 - Approximately 170,000 light-duty EVs will need to be deployed by 2030
 - Approximately 50,000 medium and heavy-duty EVs will need to be deployed by 2030
- Advanced Clean Cars II (ACCII) and Advanced Clean Trucks (ACT) rules
 - State of VT is considering adopting these by the end of 2022
- <u>2021 White House announcement regarding 2030 goal for light-duty vehicle sales</u> aiming for "...electric vehicles to make up 50% of all vehicles sold in the United States by 2030."

ISO-NE PUBLIC

Vermont

EV Adoption Forecast Assumptions

- "Full Electrification" scenario
 - Assumes all state and local policy, programs, goals and announcement targets are achieved in the listed timeframe solely through the adoption of electric vehicles
- "CELT 2023" scenario
 - Personal and Fleet light-duty vehicles
 - Reflects anticipated adoption of the Advanced Clean Cars II (ACCII) and Advanced Clean Trucks (ACT) rules, but at a lagged pace 3-5 years behind the targets listed in the rules
 - School buses, transit buses, and medium-duty delivery
 - Maintains that the 2030 MDHD ZEV goal (30% of new truck and bus sales) is met by EVs

ISO-NE PUBL

New Hampshire

EV Adoption Forecast Drivers and Assumptions

- In New Hampshire, although there are a number of utility incentive programs offering rebates for charger installations, documentation pointing to specific expectations about EV adoption is scarce
 - There does not appear to be any guidance about EV targets needed to meet decarbonization goals
- "Full Electrification" scenario
 - The only explicit driver incorporated into the "Full Electrification" scenario is the <u>2021 White House</u> <u>announcement regarding 2030 goal for light-duty vehicle sales</u> aiming for "...electric vehicles to make up 50% of all vehicles sold in the United States by 2030."
 - In the remaining 3 vehicle categories (medium-duty delivery, school buses, and transit buses) the "Full Electrification" scenario traces very closely to the CELT 2022 forecast through 2031, and is extrapolated out until all vehicles in each category are electrified

ISO-NE PUBLIC

- "CELT 2023" scenario
 - Personal and Fleet light-duty vehicles
 - Split between the CELT 2022 forecast and the "Full Electrification" scenario
 - School buses, transit buses, and medium-duty delivery
 - Aligns with the CELT 2022 forecast and the "Full Electrification" scenario

Maine

EV Adoption Forecast Drivers

- In Maine, in addition to incentive programs offering rebates for EV purchases and charger installations, the state also has a number of references that mandate or suggest specific expectations about EV adoption
- 2013 Multi-State Zero-Emission Vehicle MOU
 - Collective target among initial signatory states to achieve a goal of 3.3 million EVs on the road by 2025
- <u>2020 Multi-State Medium- and Heavy-Duty Zero Emission Vehicle MOU</u>
 - Goal that all new medium- and heavy-duty vehicle sales in each of 15 state jurisdictions be zero-emission vehicles by 2050, with an interim goal of 30% of new vehicle sales by 2030
- Maine Won't Wait
 - State climate action plan setting a goal of 41,000 light-duty EVs on the road in Maine by 2025 and 219,000 by 2030

ISO-NE PUBLIC

- Greater Portland Transit District (Metro) ZEV Goal
 - Metro's Board of Directors passed a resolution committing to be zero emissions by 2040
 - Metro oversees approximately 29 out of the state's 194 transit buses

Maine

EV Adoption Forecast Assumptions

- "Full Electrification" scenario
 - Assumes all state and local policy, programs, goals and announcement targets are achieved in the listed timeframe solely through the adoption of electric vehicles
- "CELT 2023" scenario
 - Aligns with the "Full Electrification" scenario and state confidence that the goals it reflects will be achieved

ISO-NE PUBL

Rhode Island

EV Adoption Forecast Drivers

- In Rhode Island, in addition to incentive programs offering rebates for EV purchases and charger installations, the state also has a number of references that mandate or suggest specific expectations about EV adoption
- 2013 Multi-State Zero-Emission Vehicle MOU
 - Collective target among initial signatory states to achieve a goal of 3.3 million EVs on the road by 2025
- 2020 Multi-State Medium- and Heavy-Duty Zero Emission Vehicle MOU
 - Goal that all new medium- and heavy-duty vehicle sales in each of 15 state jurisdictions be zero-emission vehicles by 2050, with an interim goal of 30% of new vehicle sales by 2030
- <u>RIPTA Sustainable Fleet Transition (2020)</u>
 - Considers nine technology deployment scenarios for converting RIPTA's bus fleet to ZEV
 - Include a baseline diesel case and four scenarios that are based on combinations of technologies
 - "100% Depot Charging Scenario" is utilized to develop the "Full Electrification" scenario listed in this presentation
 - RIPTA's current diesel fleet is transitioned to depot-charged battery-electric buses by 2032
- <u>Electrifying Transportation (2021)</u>
 - Strategic policy guide for improving public access to EV charging infrastructure in Rhode Island
 - RIPTA has plans to purchase and deploy 16-20 electric buses as permanent additions to its fleet by 2023
- <u>2021 White House announcement regarding 2030 goal for light-duty vehicle sales</u> aiming for *"…electric vehicles to make up 50% of all vehicles sold in the United States by 2030."*

ISO-NE PUBLIC

Rhode Island

EV Adoption Forecast Assumptions

- "Full Electrification" scenario
 - Assumes all state and local policy, programs, goals and announcement targets are achieved in the listed timeframe solely through the adoption of electric vehicles
- "CELT 2023" scenario
 - Medium-duty delivery and school buses
 - Maintains that the MDHD MOU ZEV goal (30% of new truck and bus sales by 2030) is met by EVs
 - Transit buses
 - Reflects EV adoption beyond the MDHD ZEV MOU, assuming near-term RIPTA goals are met (deployment of 16-20 EV buses by 2023)
 - Personal and fleet light-duty vehicles
 - Split between the CELT 2022 forecast and the "Full Electrification" scenario, recognizing the EV goals currently in place, but reflecting the fact that there is significant uncertainty in the timing of progress toward these goals over the next decade

46

ISO-NE PUBLI